• Гироскоп в планшете - что это? Что такое гироскоп в смартфоне и как он работает

    Гироскоп - один из многих современных датчиков, без которых сложно представить работу смартфона.

    Область применения этого датчика в телефоне достаточно обширна. Полноценный гироскоп визуально напоминает юлу внутри нескольких обручей. Ввиду габаритов такая конструкция не может быть установлена в гаджете, поэтому ее заменили на датчик, основанный на микроэлектромеханической системе.

    Что такое гироскоп?

    Гироскоп в современном телефоне - датчик, который позволяет автоматически менять ориентацию экрана в зависимости от положения смартфона.

    Впервые гироскоп был установлен в iPhone 4, благодаря чему устройство обрело новый полезный функционал. С датчиком пользователи получили возможность, например, перелистывать страницы и переключать треки в плеере встряхиванием смартфона.

    Для включения датчика на устройствах с операционной системой Android 4.0 KitKat и выше достаточно выкатить шторку уведомлений и активировать опцию автоповорота экрана.

    Акселерометр и гироскоп

    Как правило, современные телефоны оснащены этими датчиками в паре. Принцип их работы хоть и похож, но не дублируется. измеряет ускорение объекта при перемещении, в то время как гироскоп измеряет угол отклонения аппарата относительно разных плоскостей.

    Функции гироскопа в смартфонах

    Гироскоп вывел игровой процесс на новый уровень. Вращая устройство в пространстве, пользователь может управлять автомобилем, вести игровой поединок, искать персонажей и многое другое.

    Если говорить о стандартных приложениях, наиболее показательными преимущества гироскопа выглядят, например, в приложении калькулятор. В портретной ориентации пользователю доступны стандартные действия: сложение, вычитание, умножение и деление. Повернув телефон на 90 градусов, можно получить большой выбор тригонометрических функций на все случаи жизни.

    Разумеется, с автоматической работы датчика гораздо удобнее смотреть видео в YouTube и листать фотографии. Еще датчик можно использовать, чтобы сделать из телефона строительный уровень - д ля этого нужно скачать специальное приложение.

    По сути, недостатков у гироскопа нет. Конечно, иногда появляется дискомфорт при просмотре картинок или чтении, когдапри изменении позы человека и устройства возможны нежеланные изменения ориентации экрана. Решение простое - отключить автоповорот в настройках.

    Гироскопы предназначены для демпфирования угловых перемещений моделей вокруг одной из осей, либо стабилизации их углового перемещения. Применяются в основном на летающих моделях в случаях, когда необходимо повысить стабильность поведения аппарата или создать ее искусственно. Наибольшее применение (около 90%) гироскопы нашли в вертолетах обычной схемы для стабилизации относительно вертикальной оси путем управления шагом рулевого винта. Это обусловлено тем, что вертолет обладает нулевой собственной стабильностью по вертикальной оси. В самолетах гироскоп может стабилизировать крен, курс и тангаж. Курс стабилизируют в основном на турбореактивных моделях для обеспечения безопасного взлета и посадки, - там большие скорости и взлетные дистанции, а ВПП, как правило, узкая. Тангаж стабилизируют на моделях с малой, нулевой, либо отрицательной продольной устойчивостью (с задней центровкой), повышающей их маневренные возможности. Крен полезно стабилизировать даже на учебных моделях.

    На самолетах и планерах спортивных классов гироскопы запрещены требованиями FAI.


    Гироскоп состоит из датчика угловой скорости и контроллера. Как правило, они конструктивно объединены, хотя на устаревших, а также "крутых" современных гироскопах размешены в разных корпусах.

    По конструкции датчиков вращения, гироскопы можно разделить на два основных класса: механические и пьезо. Точнее, сейчас делить особо уже не на что, потому что механические гироскопы полностью сняты с производства как морально устаревшие. Тем не менее, распишем и их принцип работы тоже, хотя бы ради исторической справедливости.

    Основу механического гироскопа составляют тяжелые диски, закрепленные на валу электродвигателя. Двигатель в свою очередь имеет одну степень свободы, т.е. может свободно вращаться вокруг оси, перпендикулярной валу двигателя.


    Раскрученные двигателем тяжелые диски обладают гироскопическим эффектом. Когда вся система начинает вращаться вокруг оси, перпендикулярной двум другим, двигатель с дисками отклоняется на определенный угол. Величина этого угла пропорциональна скорости поворота (те, кто интересуется силами, возникающими в гироскопах, могут поглубже ознакомиться с кориолисовым ускорением в специальной литературе). Отклонение мотора фиксируется датчиком, сигнал которого поступает на блок электронной обработки данных.

    Развитие современных технологий позволило разработать более совершенные датчики угловых скоростей. В результате появились пьезогироскопы, которые к настоящему времени полностью вытеснили механические. Конечно, они по-прежнему используют эффект кориолисова ускорения, но датчики являются твердотельными, то есть вращающиеся части отсутствуют. В наиболее распространенных датчиках используются вибрирующие пластины. Поворачиваясь вокруг оси, такая пластина начинает отклоняться в плоскости, поперечной плоскости вибрации. Это отклонение измеряется и поступает на выход датчика, откуда снимается уже внешней схемой для последующей обработки. Самыми известными производителями подобных датчиков являются фирмы Murata и Tokin .

    Пример типичной конструкции пьезоэлектрического датчика угловых скоростей дан на следующем рисунке.


    У датчиков подобной конструкции есть недостаток в виде большого температурного дрейфа сигнала (т.е. при изменении температуры на выходе пьезодатчика, находящегося в неподвижном состоянии, может появиться сигнал). Однако достоинства, получаемые взамен, намного перекрывают это неудобство. Пьезогироскопы потребляют намного меньший ток по сравнению с механическими, выдерживают большие перегрузки (менее чувствительны к авариям), позволяют более точно реагировать на повороты моделей. Что касается борьбы с дрейфом, то в дешевых моделях пьезогироскопов есть просто регулировка "нуля", а в более дорогих - автоматическая установка "нуля" микропроцессором при подаче питания и компенсация дрейфа температурными датчиками.

    Жизнь, однако, не стоит на месте, и вот уже в новой линейке гироскопов от Futaba (Семейство Gyxxx с системой "AVCS") уже стоят датчики от Silicon Sensing Systems , которые очень выгодно отличаются по характеристикам от продуктов Murata и Tokin. Новые датчики имеют более низкий температурный дрейф, более низкий уровень шумов, очень высокую виброзащищенность и расширенный диапазон рабочих температур. Это достигнуто за счет изменения конструкции чувствительного элемента. Он выполнен в виде кольца, работающего в режиме изгибных колебаний. Кольцо делается методом фотолитографии, как микросхема, поэтому датчик называется SMM (Silicon Micro Machine). Не будем углубляться в технические подробности, любопытные смогут найти все здесь: http://www.spp.co.jp/sssj/comp-e.html . Приведем лишь несколько фотографий самого датчика, датчика без верхней крышки и фрагмента кольцевого пьезоэлемента.


    Типичные гироскопы и алгоритмы их работы

    Наиболее известными производителями гироскопов на сегодняшний день являются фирмы Futaba , JR-Graupner , Ikarus , CSM , Robbe , Hobbico и т.д.

    Теперь рассмотрим режимы работы, которые используются в большинстве выпускаемых гироскопов (всякие необычные случаи рассмотрим потом отдельно).

    Гироскопы со стандартным режимом работы

    В этом режиме гироскоп демпфирует угловые перемещения модели. Такой режим достался нам в наследство от механических гироскопов. Первые пьезогироскопы отличались от механических в основном датчиком. Алгоритм работы остался неизменным. Суть его сводится к следующему: гироскоп измеряет скорость поворота и выдает коррекцию к сигналу с передатчика, чтобы замедлить вращение, насколько это возможно. Ниже дается пояснительная блок-схема.


    Как видно из рисунка, гироскоп пытается подавить любое вращение, в том числе и то, которое вызвано сигналом с передатчика. Чтобы избежать такого побочного эффекта, желательно на передатчике задействовать дополнительные микшеры, чтобы при отклонение ручки управления от центра, чувствительность гироскопа плавно уменьшалась. Такое микширование может быть уже реализовано внутри контроллеров современных гироскопов (чтобы уточнить, есть оно или нет - посмотрите характеристики устройства и руководство по эксплуатации).

    Регулировка чувствительности реализуется несколькими способами:

    1. Дистанционная регулировка отсутствует. Чувствительность задается на земле (регулятором на корпусе гироскопа) и не меняется во время полета.
    2. Дискретная регулировка (dual rates gyro). На земле задается два значения чувствительности гироскопа (двумя регуляторами). В воздухе можно выбирать нужное значение чувствительности по каналу регулирования.
    3. Плавная регулировка. Гироскоп выставляет чувствительность пропорционально сигналу в регулирующем канале.

    В настоящее время практически все современные пьезогироскопы имеют плавную регулировку чувствительности (а о механических гироскопах можно уже смело забыть). Исключение составляют только базовые модели некоторых производителей, где чувствительность устанавливается регулятором на корпусе гироскопа. Дискретная регулировка необходима только с примитивными передатчиками (где нет дополнительного пропорционального канала или нельзя выставить длительности импульсов в дискретном канале). В этом случае в канал регулирования гироскопа можно включить небольшой дополнительный модуль, который будет выдавать заданные значения чувствительности в зависимости от положения тумблера дискретного канала передатчика.

    Если говорить о достоинствах гироскопов, реализующих только "стандартный" режим работы, то можно отметить, что:

    • Такие гироскопы имеют довольно низкую цену (вследствие простоты реализации)
    • При установке на хвостовую балку вертолета, новичкам проще выполнять полеты по кругу, так как за балкой можно особенно не следить (балка сама разворачивается по ходу движения вертолета).

    Недостатки:

    • В недорогих гироскопах термокомпенсация сделана недостаточно хорошо. Необходимо вручную выставлять "ноль", который может сместиться при изменении температуры воздуха.
    • Приходится применять дополнительные меры по устранению эффекта подавления гироскопом управляющего сигнала (дополнительное микширование в канале управления чувствительности или увеличение расхода рулевой машинки).

    Вот довольно известные примеры описанного типа гироскопов:

    При выборе рулевой машинки, которая будет подключаться к гироскопу, следует отдавать предпочтение более быстрым вариантам. Это позволит добиться большей чувствительности, без риска, что в системе возникнут механические автоколебания (когда из-за перерегулирования рули начинают сами двигаться из стороны в сторону).

    Гироскопы с режимом удержания направления

    В этом режиме стабилизируется угловое положение модели. Для начала маленькая историческая справка. Первой фирмой, которая сделала гироскопы с таким режимом, была CSM. Режим она назвала Heading Hold. Поскольку название было запатентовано, другие фирмы стали придумывать (и патентовать) свои собственные названия. Так возникли марки "3D", "AVSC" (Angular Vector Control System) и другие. Такое многообразие может повергнуть новичка в легкое замешательство, но на самом деле, никаких принципиальных различий в работе таких гироскопов нет.

    И еще одно замечание. Все гироскопы, которые имеют режим Heading Hold, поддерживают также и обычный алгоритм работы. В зависимости от выполняемого маневра, можно выбирать тот режим гироскопа, который больше подходит.

    Итак, о новом режиме. В нем гироскоп не подавляет вращение, а делает его пропорциональным сигналу с ручки передатчика. Разница очевидна. Модель начинает вращаться именно с той скоростью, с которой нужно, независимо от ветра и других факторов.

    Посмотрите блок-схему. По ней видно, что из управляющего канала и сигнала с датчика получается (после сумматора) разностный сигнал ошибки, который подается на интегратор. Интегратор же меняет сигнал на выходе до тех пор, пока сигнал ошибки не будет равен нулю. Через канал чувствительности регулируется постоянная интегрирования, то есть скорость отработки рулевой машинки. Разумеется, вышеприведенные объяснения весьма приблизительны и обладают рядом неточностей, но ведь мы собираемся не делать гироскопы, а применять их. Поэтому нас гораздо больше должны интересовать практические особенности применения подобных устройств.

    Достоинства режима Heading Hold очевидны, но хочется особо подчеркнуть плюсы, которые проявляются при установке такого гироскопа на вертолет (для стабилизации хвостовой балки):

    • на вертолете начинающий пилот в режиме висения может практически не управлять хвостовым винтом
    • отпадает необходимость в микшировании шага хвостового винта с газом, что несколько упрощает предполетную подготовку
    • триммирование хвостового винта можно производить без отрыва модели от земли
    • становится возможным выполнение таких маневров, которые раньше были затруднены (например, полет хвостом вперед).

    Для самолетов применение данного режима тоже может быть оправдано, особенно на некоторых сложных 3D-фигурах вроде "Torque Roll".

    Вместе с тем следует отметить, что каждый режим работы имеет свои особенности, поэтому использование Heading Hold везде подряд не является панацеей. При выполнении обычных полетов на вертолете, особенно новичками, использование функции Heading Hold может привести к потере управления. Например, если не управлять хвостовой балкой при выполнении виражей, то вертолет опрокинется.

    В качестве примеров гироскопов, которые поддерживают режим Heading Hold, можно привести следующие модели:

    Переключение между стандартным режимом и Heading Hold производится через канал регулировки чувствительности. Если менять длительность управляющего импульса в одну сторону (от средней точки), то гироскоп будет работать в режиме Heading Hold, а если в другую - то гироскоп перейдет в стандартный режим. Средная точка - когда длительность канального импульса равна примерно 1500 мкс; то есть, если бы мы подключили на этот канал рулевую машинку, то она установилась бы в среднее положение.

    Отдельно стоит затронуть тему применяемых рулевых машинок. Для того, чтобы добиться максимального эффекта от Heading Hold, нужно ставить рулевые машинки с повышенной скоростью работы и очень высокой надежностью. При повышении чувствительности (если скорость отработки машинки позволяет), гироскоп начинает перекладывать сервомеханизм очень резко, даже со стуком. Поэтому машинка должна иметь серьезный запас прочности, чтобы долго прослужить и не выйти из строя. Предпочтение стоит отдавать так называемым "цифровым" машинкам. Для самых современных гироскопов разрабатывают даже специализированные цифровые сервомашинки (например, Futaba S9251 для гироскопа GY601). Помните, что на земле, из-за отсутствия обратной связи от датчика вражений, если не принять дополнительных мер, то гироскоп обязательно выведет рулевую машинку в крайнее положение, где она станет испытывать максимальную нагрузку. Поэтому если в гироскоп и рулевую машинку не встроены функции ограничения хода, то рулевая машинка должна уметь выдерживать большие нагрузки, чтобы не выйти из строя еще на земле.

    Специализированные самолетные гироскопы

    Для применения в самолетах с целью стабилизации крена начали выпускать специализированные гироскопы. От обычных они отличаются тем, что имеют еще один канал внешней команды.

    При управлении каждого элерона отдельным серво, самолетчики с компьютерной аппаратурой задействуют функцию флаперонов. Микширование происходит на передатчике. Однако контроллер самолетного гироскопа на модели автоматически определяет синфазное отклонение обоих каналов элеронов и не мешает ему. А противофазное отклонение задействуется в петле стабилизации крена - в ней присутствуют два сумматора и один датчик угловой скорости. Других отличий нет. Если элероны управляются от одного серво, то специализированный самолетный гироскоп не нужен, сгодится и обычный. Самолетные гироскопы делают фирмы Hobbico, Futaba и другие.

    Касаясь применения гироскопов на самолете, нужно отметить, что нельзя использовать режим Heading Hold на взлете и посадке. Точнее, в тот момент, когда самолет касается земли. Это потому, что когда самолет находится на земле, он не может накрениться или повернуть, поэтому гироскоп выведет рули в какое-нибудь крайнее положение. А при отрыве самолета от земли (или сразу после посадки), когда модель имеет большую скорость, сильное отклонение рулей может сыграть злую шутку. Поэтому настоятельно рекомендуется использовать гироскоп на самолетах в стандартном режиме.

    В самолетах эффективность рулей и элеронов пропорциональна квадрату скорости полета самолета. При широком диапазоне скоростей, что характерно для сложного пилотажа, необходимо компенсировать это изменение регулированием чувствительности гироскопа. Иначе при разгоне самолета система перейдет в автоколебательный режим. Если же задать сразу низкий уровень эффективности гироскопа, то на малых скоростях, когда он особенно нужен, от него не будет должного эффекта. На настоящих самолетах такое регулирование делает автоматика. Возможно, скоро так будет и на моделях. В некоторых случаях переход в автоколебательный режим органа управления полезен - при очень низких скоростях полета самолета. Многие наверное видели, как на МАКС-2001 "Беркут" С-37 показывал фигуру "харриер". Переднее горизонтальное оперение при этом работало в автоколебательном режиме. Гироскоп в канале крена позволяет делать самолет "несваливаемым на крыло". Подробнее о работе гироскопа в режиме стабилизации тангажа самолетов можно почитать в известной монографии И.В.Остославского "Аэродинамика самолета".

    Заключение

    В последние годы появилось много дешевых моделей миниатюрных гироскопов, позволяющих расширить сферу их применения. Простота инсталляции и низкие цены оправдывают использование гироскопов даже на учебных и радиобойцовых моделях. Прочность пьезоэлектрических гироскопов такова, что при аварии скорее испортится приемник или серво, чем гироскоп.

    Вопрос о целесообразности насыщения летающих моделей современной авионикой каждый решает сам. На наш взгляд, в спортивных классах самолетов, - по крайней мере, на копиях, гироскопы все-таки со временем разрешат. Иначе невозможно обеспечить реалистичный, похожий на оригинал полет уменьшенной копии из-за разных чисел Рейнольдса. На хоббийных аппаратах применение искусственной стабилизации позволяет расширить диапазон погодных условий полетов, и летать в такой ветер, когда только ручное управление не в состоянии удержать модель.

    Мобильные персональные компьютеры, одним из которых является , оснащаются огромным количеством функций. Продвинутые пользователи задействуют ресурсы по максимуму, но большинство обладателей планшетов даже не подозревает, какие возможности открывают те или иные составляющие устройства. Возьмем, к примеру, гироскоп в планшете – что это, для чего он необходим, как им пользоваться – знает не каждый.

    Функции гироскопа в планшете

    Принцип работы гироскопа заключается в том, что эта деталь точно определяет положение устройства в пространстве и измеряет углы поворота. Происходит это за счет установленного в планшете гироскопического датчика. На сегодняшний день гироскопы настолько компактны, что ими оснащаются , телефоны. Нередко гироскоп путают с акселерометром, но это разные составляющие. Основная функция акселерометра – поворот дисплея, поскольку он измеряет угол наклона электронного устройства относительно поверхности планеты. Гироскоп в свою очередь не только определяет положение в пространстве, но и позволяет отслеживать перемещения. Когда акселерометр и гироскоп в планшете задействованы одновременно, достигается наилучшая точность работы.

    Примеры использования гироскопа в планшете

    Одна из функций гироскопа – защитная. Так как работает гироскоп, реагируя на изменение положения, он может вовремя подать сигнал о падении устройства. К примеру, такая функция в ноутбуках и некоторых планшетах позволяет моментально зафиксировать жесткий диск и снизить вероятность его повреждения при ударе о поверхность. Также на вопрос, зачем гироскоп в планшете, с энтузиазмом ответит любой игроман. Управление виртуальным рулем гоночного автомобиля или штурвалом самолета стало абсолютно реалистичным с изобретением этого датчика.

    Наличие гироскопа позволило по-новому управлять устройством – к примеру, определенный алгоритм резких движений планшетом поможет увеличить или уменьшить громкость звучания, в телефонах с гироскопом можно с помощью движения ответить на звонок и т.д. Кроме того гироскоп может «сотрудничать» с программным обеспечением. Популярный пример – калькулятор, который при повороте из стандартного вертикального положения в горизонтальное превращается из обычного в инженерный, оснащенный дополнительными функциями типа тригонометрических или логарифмических.

    Также можно привести в пример бытовое использование гироскопа – он способен наделить планшет функциями строительного уровня. Удобно пользоваться планшетом с гироскопом в качестве навигатора. Карта, благодаря датчику, отображается таким образом, что демонстрирует именно ту местность, которая открывается перед глазами. При повороте вокруг своей оси карта меняет изображение в соответствии с новым обзором.

    Есть ли минусы у гироскопа?

    Датчик гироскоп реагирует на изменение положения в пространстве, но он не обладает телепатическими способностями. Далеко не всегда на поворот устройства нужна именно такая реакция, которая последует в результате оценки ситуации гироскопом. Элементарный пример – чтение лежа, гироскоп будет поворачивать текст на дисплее в вертикальное положение, в то время как читающему человеку он нужен в горизонтальном. Безусловно, такая ситуация будет раздражать, поэтому при покупке планшета важно убедиться, что в устройстве предусмотрена возможность отключения функции.

    Неисправная работа гироскопа

    Если не работает гироскоп на планшете или работает некорректно, это не повод смириться и отказаться от его использования. Конечно, если проблема аппаратная, придется нести планшет в сервис и вкладывать деньги в ремонт, но дело может быть всего лишь в настройках датчика. Обычно в инструкциях к устройству можно найти подробное описание, как настроить гироскоп на планшете конкретной модели. В большинстве случаев достаточно стандартной калибровки датчика, если результат не достигнут, можно скачать дополнительные приложения.

    Несмотря на популярность этого датчика, многие задают вопрос о том, что такое гироскоп. Попробуем разобраться.

    1. Гироскоп в классическом понимании

    Рассматриваемое нами устройство, фактически, представляет собой волчок, который вращается вокруг вертикальной оси. Он закреплен в поворачивающейся вокруг другой оси раме. Эта другая ось тоже закреплена в своей раме, поворачивающейся вокруг третьей оси.

    Благодаря этому как бы не поворачивался волчок, он всегда будет иметь вертикальное положение в пространстве.

    Принцип работы гироскопа можно также увидеть на рисунке №1. Из него, в частности, можно понять, что в классическом устройстве есть вибрирующие грузики. А частота их вибрации равна скорости, умноженной на перемещение.

    Благодаря такому явлению, как Кариолисово ускорение, несмотря на поворот тела, оно способно сохранять свое положение относительно плоскости вращения. Разумеется, оно имеет место только во время вращения.

    Собственно, на этом простом свойстве вращающихся тел и основывается принцип работы того гироскопа, который есть у большинства из нас в смартфоне.

    Разработчики научились делать гироскоп намного проще и меньше. Это позволило им умещать его в небольшую плату, которую можно разместить под корпусом любого современного мобильного девайса.

    2. Предназначение датчика в телефоне

    В телефоне он нужен для того, чтобы определять положение аппарата в пространстве.

    Для пользователя все выглядит предельно просто – Вы поворачиваете смартфон горизонтально или вертикально и положение всех значков на экране меняется. Это применимо для игр и разнообразных программ.

    Во многих случаях повороты экрана можно использовать для выполнения определенных действий, например, для блокировки клавиатуры.

    Интересно: Впервые гироскоп использовали в Айфоне 4. С тех пор этот датчик стал обязательным элементом любого мобильного девайса.

    Теперь Вы знаете, как работает этот датчик. Стоит разобраться в том, как узнать есть ли он в Вашем гаджете.

    3. Как проверить наличие гироскопа

    В зависимости от операционной системы для этой цели можно использовать разные программы:

    • Sensor Box для Андроид;
    • Sensor Kinetics для iOS.

    В первой программе нужно нажать иконку «Accelerometer sensor». Во второй делать не нужно ничего.

    Существует способ еще проще – если в настройках есть пункт «Поворот экрана» (или что-то подобное), гироскоп есть. Но вышеупомянутые приложения помогают выявить проблемы в работе этого датчика.

    Многие слышали про гироскоп в телефоне - что это такое интересно, пожалуй, только тем пользователям гаджета, которые в технических характеристиках заметили незнакомое название. На самом же деле функциями этого микроприбора мы пользуемся достаточно часто. Он способен выручить нас в момент отсутствия необходимого строительного инструмента, указать нам направление движения, когда это необходимо и справиться с различными, еще более сложными задачами.

    Для чего гироскоп в вертолете?

    Высокотехнологичные приборы широко используются в военно-техническом оснащении армии. Например, гироскоп является важной составляющей частью вертолетной навигационной системы. В вертолетах устанавливаются гироскопические приборы на качественных подшипниках, которые не позволяют внешним факторам воздействовать на его ось. Таким образом, он способен отображать уровень наклона поверхности , к которой прикреплен.

    Когда вертолет заходит в поворот, устройство давит на соответствующую пружину, расположенную под его горизонтальным основанием до тех пор, пока экипаж не выровняет машину по вертикальной оси. Причем сила давления на пружину прямо пропорциональна угловой скорости вертолета.

    Еще одной немаловажной функцией является стабилизация вертолета в момент раскачивания или заноса его хвоста. Гироскоп:

    1. Определяет раскачивание;
    2. Дает сигнал винтовым лопастям;
    3. Лопасти в свою очередь начинают работу в режиме недопущения раскручивания машины.

    Так вертолет остается в стабильном равновесии и не зависит от потоков воздуха или других внешних факторов.

    В этом видео физик Аркадий Жалеев покажет принцип работы большого гирокомпаса:

    Где еще используют прибор?

    Гироскоп очень важен для самолетостроения. Его работа детально изучается пилотами, однако нам, простым пассажирам, понятно, что в небе самолет ориентируется именно благодаря этому прибору.

    С его помощью выполняется:

    • Работа автопилота;
    • Маневрирование в воздухе;
    • Взлет и посадка.

    Все это обусловлено работой гироскопа.

    В подводных лодках аппарат позволяет определить:

    1. Курс судна;
    2. Равновесие или баланс корпуса.

    Также такие приборы используются в космонавтике, где ориентироваться по визуальным и тактильным ощущениям невозможно.

    Велико место прибора в робототехнике. Благодаря его функциям могут отслеживаться изменения положения в пространстве различных предметов, например, головы или тела робота. Является основным и самым важным устройством в гироскутере.

    Таким образом, гироскоп - крайне важный предмет для наукоемких производств, военно-промышленного комплекса и бытовой жизни каждого человека. Он намного облегчает нам жизнь и делает ее интереснее, а для науки является ценнейшим навигационным прибором.

    Гироскоп: как работает устройство?

    Современные гаджеты оснащены массой различных полезных функций. Одной из таких новинок является гироскоп. Впервые он был использован в телефонах компании Apple.

    Это маленький чип внутри смартфона, суть работы которого заключается:

    1. В определении местоположения смартфона в пространстве ;
    2. Вычислении углов горизонта.

    Таким образом, многие функции телефона напрямую зависят от гироскопа:

    • Направление и скорость движения в навигаторе;
    • Автоматический переход экрана в горизонтальное или вертикальное положение;
    • Игры в телефоне, где гироскоп используется в качестве руля;
    • Ответ на звонок или переключение различных функций с помощью встряхивания телефона.

    Также аппарат может выступать в качестве прибора, измеряющего угол наклона, например, всем известного уровня. Это бывает необходимо и в быту, и в строительной профессии.

    Все это - помощь того самого вшитого чипа. Сегодня практически все телефоны оснащены таким датчиком. Убедиться в этом вы можете, обратившись к техническим характеристикам гаджета или установив программу, позволяющую определить все встроенные в телефон датчики.

    Отличие гироскопа от акселерометра

    Многие путают эти два устройства, называя их приборами с одинаковым функционалом, но разными названиями, однако такие рассуждения ошибочны. Принцип действия этих приборов немного разнится:

    1. Акселерометр определяет угол ускорения относительно земли, тогда как его коллега - угол своего положения;
    2. Акселерометр имеет возможность измерять длительность движения, а гироскоп - нет;
    3. У акселерометра есть возможность издавать сигналы при прохождении определенного расстояния;
    4. Гироскоп может определять стороны света, акселерометр - нет.

    Таким образом, оба эти прибора отлично дополняют друг друга и часто используются в тандеме на различных устройствах.

    Устройство гироскопа

    Прибор гироскоп был изобретен еще в 19 веке. Его работа заключается во вращении твердых тел с высокой скоростью вокруг оси. Самым простым и наглядным примером работы агрегата является простая игрушка юла. Когда мы раскручиваем ее, она вращается вокруг оси до тех пока на нее не начинают воздействовать внешние силы.

    Гироскоп в свою очередь не подвержен такому воздействию и сохраняет устойчивость благодаря гораздо большей силе вращения, чем у юлы. Таким образом, вы можете поворачивать аппарат как угодно, но его ось останется неизменно вертикальной.

    Самый первый гироскоп был механическим, однако дальше, с развитием науки он стал лазерным и оптическим. В электромеханике сегодня такие приборы используются в виде микроэлектромеханических датчиков. Именно таким образом он умещается в телефон, сложную навигационную систему кораблей, самолетов и вертолетов.

    Таким образом, в современном мире люди живут, что называется на высоких скоростях. Однако для упрощения и увеличения качества жизни в бытовой обиход входят все больше приборов, которые ранее использовались только для высоких технологий. Одним из таких примеров, является гироскоп в телефоне. Что это за устройство, давно знают капитаны морских судов и подводных лодок, пилоты и космонавты. В современном гаджете такое устройство появилось относительно недавно, но уже прочно закрепилось среди важных и полезных функций.

    Видео о принципе работы приборов для ориентации в пространстве

    В данном ролике Роман Лодин расскажет, с помощью чего гироскопу и акселерометру удается определить свое местоположение и чем отличаются эти два прибора: