• Какие системы резервирования применяются в радиорелейной связи. Радиорелейная связь

    1. Общие принципы построения радиорелейных линий. Спутниковые и радиорелейные системы передачи

    1. Общие принципы построения радиорелейных линий

    1.1. Принципы радиорелейной связи

    Используемые на РРЛ и ТРЛ диапазоны радиочастот обладают рядом достоинств. В каждом из этих широкополосных диапазонов можно передавать много широкополосных сигналов. В этих диапазонах антенны с большими коэффициентами усиления имеют сравнительно небольшие размеры. Применение таких антенн позволяет получить устойчивую связь при малой мощности передатчика. Спектр внешних помех атмосферного и промышленного происхождения лежит в более низкочастотной области, чем УВЧ. Поэтому в диапазонах УВЧ и более высокочастотных таких помех практически нет. Наибольшее распространение на магистральных РРЛ нашли АРРС, работающие в сантиметровом диапазоне волн.

    Радиорелейную линию связи строят в виде цепочки приемопередающих РРС. На РРЛ устанавливают передатчики мощностью 0,1...10 Вт, приемники с коэффициентом шума около 10 дБ, антенны с коэффициентом усиления около 40 дБ (площадь раскрыва около 10 м2).

    На такой РРЛ между антеннами соседних РРС должна быть прямая видимость. Для этого антенны устанавливают на опорах, чаще всего на высоте 40...100 м. Расстояние между соседними РРС магистральных РРЛ обычно около 50 км. На ТРЛ среднее расстояние между соседними станциями около 250 км. На ТРЛ применяют передатчики мощностью 1...10 кВт, приемники с малошумящими усилителями (МШУ), имеющими эффективную шумовую температуру 150... 200 К, антенны с коэффициентом усиления около 40 дБ

    Типы станций . Основные типы РРС: оконечная (ОРС), узловая (УРС) и промежуточная (ПРС). На ОРС и УРС устанавливают радиопередатчики и радиоприемники (рис. 1.1). В составе радиопередатчика - модулятор Мд и передатчик СВЧ сигнала П, в составе радиоприемника - приемник СВЧ сигналов Пр и демодулятор Дм (ср. с рис. В.1). В передатчике СВЧ модулированный сигнал промежуточной частоты (ПЧ) преобразуется в сигнал СВЧ либо УВЧ диапазона, в приемнике СВЧ происходит обратное преобразование принятого СВЧ сигнала в сигнал ПЧ. Приемник СВЧ и передатчик, СВЧ вместе образуют приемопередатчик СВЧ, устанавливаемый на ПРС.

    На ОРС, располагаемых на концах РРЛ, происходит ввод и выделение передаваемых сигналов, например МТС.

    На ПРС происходит ретрансляция радиосигнала: прием, усиление, сдвиг по частоте и передача в направлении следующей РРС. При передаче радиосигналов вещательного телевидения по РРЛ на каждой ПРС предусмотрена возможность выделения телевизионной программы. Станция, на которой такая возможность реализована, называется ПРС с выделением телевидения (ПРСВ).

    На УРС имеет место ретрансляция радиосигнала и разветвление РРЛ. От УРС часто берут начало новые РРЛ или кабельные линии связи. На УРС всегда происходит выделение из МТС части ТФ сигналов и ввод новых, поэтому там всегда устанавливают модуляторы и демодуляторы. Конструктивно их часто объединяют в устройстве, получившем название модем. Рекомендуемое для нашей страны среднее расстояние между соседними УРС составляет 250 км.

    На УРС, как правило, имеет место разветвление радиосигналов вещательного телевидения, так называемый транзит по ПЧ. Поскольку модемы вносят шумы, то исключение их из схемы позволяет улучшить отношение сигнал-шум в канале на конце РРЛ. На крупных УРС, где сходятся несколько РРЛ, устанавливают специальные коммутаторы по ПЧ сигналов вещательного телевидения, позволяющие оперативно выбирать ту или иную программу. Модуляторы устанавливают лишь на тех УРС, где необходимо ввести новую ТВ программу. Рекомендуемое расстояние между такими УРС в нашей стране - 2500 км.

    Радиорелейный пролет и радиорелейный участок . Часть радиорелейной линии связи между соседними РРС, включающую аппаратуру и среду распространения радиосигнала, называют радиорелейным пролетом. Часть радиорелейной линии связи, ограниченную двумя близлежащими радиорелейными станциями, которые являются оконечными или узловыми, называют радиорелейным участком.

    Сдвиг по частоте . Разность уровней сигналов на выходе и входе приемопередатчика ПРС превышает 100 дБ. Чтобы предотвратить самовозбуждение этого устройства, радиосигналы одного направления связи на ПРС (УРС) принимают и передают на разных частотах f1 и f2. Частотным сдвигом называют величину fсдв = |fа -f1|. Обычно на магистральных РРЛ fсдв=266 МГц.

    Особенности обслуживания. На РРЛ обслуживающий персонал постоянно присутствует только на ОРС и УРС. Для контроля за состоянием аппаратуры на ПРС и управления ею используют систему телеобслуживания (ТО), при организации которой всю РРЛ разбивают на эксплуатационные участки, содержащие до 10 РРС. В середине такого участка находится УРС, с которой управляют работой ПРС участка, расположенных по обе стороны от УРС. Оконечные РРС обслуживают близлежащие ПРС. Для повышения надежности и устойчивости работы аппаратуру РРЛ резервируют. Распространены два способа автоматического резервирования: постанционное и поучастковое. При постанционном резервировании в случае неисправности рабочего комплекта аппаратуры на данной станции происходит автоматическая замена его на резервный, работающий на тех же частотах.

    При поучастковом резервировании на каждой станции устанавливают рабочие и резервные комплекты приемопередатчиков СВЧ, причем рабочие частоты этих комплектов не совпадают. При повреждении аппаратуры на любой ПРС происходит автоматическое переключение модемов на концах радиорелейного участка, после чего передача сигналов на всем участке происходит с помощью резервных СВЧ приемопередатчиков. На РРС с поучастковым резервированием на концах участка устанавливают аппаратуру резервирования, с помощью которой контролируют состояние аппаратуры ВЧ стволов и переключают модемы. Команду переключения с конца участка к началу передают по каналам служебной связи. Каналы служебной связи предназначены также для передачи сигналов ТО и переговоров обслуживающего персонала.

    1.2. Многоствольные радиорелейные линии

    Стволы РРЛ . На всех станциях одной РРЛ, как правило, устанавливают однотипные приемники и передатчики СВЧ. В большинстве радиорелейных систем Пр и П на ПРС соединяют по ПЧ. Цепочка таких передатчиков и приемников СВЧ на радиорелейном участке образует высокочастотный (ВЧ) ствол. Этот ствол является универсальным, так как по нему можно организовать передачу различных сообщений. Для чего на ОРС и УРС к ВЧ стволу подключают Мд и Дм и соответствующие оконечные устройства. Последние входят в состав модема. Если по ВЧ стволу передают МТС методом аналоговой модуляции, то такой ствол называют телефонным (ТФ). Кроме него методом аналоговой ЧМ организуют телевизионные (ТВ) стволы, по которым передают ТВ программы. Цифровой (ЦФ) ствол организуют, подавая на модулятор РРС цифровой сигнал.

    Сигнал, подаваемый на модулятор, называют групповым сигналом ствола , а спектр его - линейным спектром , В аналого-цифровых (АЦФ) стволах ГС составляют из МТС и цифрового сигнала.

    Структурная схема трехствольной РРЛ . Для повышения пропускной способности на РРЛ, как правило, организуют одновременную работу нескольких ВЧ стволов на различных частотах на общие антенно-фидерный тракт (АФТ) и антенну. Такую РРЛ называют многоствольной. Она имеет более высокую экономическую эффективность, чем одноствольная, поскольку стоимость антенны, антенных опор, а также общих для всех стволов - технического здания и системы электропитания, значительно выше, чем стоимость аппаратуры ВЧ ствола.

    Для подключения нескольких приемопередатчиков к одной антенне (рис. 1.2) служат устройства совмещения (УС) и разделительные фильтры (РФ). Устройства совмещения нужны для разделения волн приема и передачи. В качестве УС используют поляризационные селекторы или ферритовые циркуляторы. Разделительные фильтры приема (РФ1) служат для разделения сигналов различных стволов на приеме на частотах f1, f3, f5. Разделительные фильтры передачи (РФ2) служат для объединения на передаче сигналов на частотах f1", f3", f5".

    На рис. 1.2 показаны ТФ и ТВ стволы, а также резервный - Рез. Аппаратура резервирования установлена на концах радиорелейного участка: приемном - Рез. пр и передающем - Рез. П. В точку 3 может поступать сигнал об аварии, который должен быть передан к началу участка на предыдущую УРС, аналогичный сигнал от последующей УРС поступает в т. 4. В ТВ стволе организован транзит по ПЧ. Выбор ответвляемой программы осуществляют с помощью коммутатора по ПЧ-Км ПЧ, к которому также подводят (в т. 5) сигнал ТВ ствола обратного направления.

    Пропускная способность ствола. В современных магистральных РРЛ с ЧМ для ВЧ ствола выделена полоса частот 28 МГц. Следовательно, ЧМ сигналы, передаваемые по стволу, должны иметь спектр не шире 28 МГц. Напомним, что ширина спектра ЧМ сигнала

    (1.1)

    где - максимальная девиация частоты, FB - верхняя модулирующая частота. Поскольку на РРЛ девиация частоты задана, то и величина FB, а следовательно, и пропускная способность ствола ограничены. Ориентировочно F<9 МГц

    1.3. Планы распределения частот

    Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне1 2 ГГц (1,7...2,1 ГГц), 500 МГц в диапазонах 4 (3,4... 3,9), 6 (5,67 ...6,17) и 8 (7,9... 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

    В полосе 400 МГц может быть организовано 6, в полосе 500 МГц - 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

    В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи - в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении "туда" используют одну поляризацию волн, а в направлении "обратно"- другую.

    Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

    Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) - обозначают индексом "НВ". На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом "ВН".

    Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В. Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

    На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные - на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе - согласно рис. 1.5,в.

    На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

    На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

    Вопросы для самоконтроля

    1. Назовите энергетические параметры радиорелейной аппаратуры. Приведите их значения для РРЛ и ТРЛ.
    2. В каких диапазонах радиоволн и частот работают РРЛ и ТРЛ? Каковы особенности этих диапазонов?
    3. Назовите типы станций на РРЛ, основные функции этих станций.
    4. Что такое ВЧ ствол? По каким признакам различают ВЧ, ТФ и ТВ стволы?
    5. Поясните назначение элементов структурной схемы ОРС трехствольной РРЛ.
    6. Поясните принципы построения плана распределения частот РРЛ. Сопоставьте планы, организованные по двух- и четырехчастотным системам.

    Разделение (уплотнение) каналов.

    Виды радиосвязи

    Лекция 4. Радиорелейные и тропосферные линии связи.

    Радиосвязь по длинам волн разделяют на радиосвязь c применением ретрансляторов :

    Радиорелейная связь,

    Спутниковая связь,

    Сотовая связь;

    без применения ретрансляторов :

    СДВ-связь,

    ДВ-связь,

    СВ-связь,

    КВ-связь земной (поверхностной) волной,

    КВ-связь ионосферной (пространственной) волной,

    УКВ-связь,

    Тропосферная связь.

    Канал связи может быть:

    симплексный - то есть допускающей передачу данных только в одном направлении(радиотрансляция, телевидение);

    полудуплексный - поочерёдно ;

    дуплексным - то есть допускающей передачу данных в обоих направлениях одновременно(телефон).

    Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

    - частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте, каждому каналу выделяется определённый диапазон частот;

    - временное разделение каналов (ВРК, TDM) - разделение каналов во времени, каждому каналу выделяется квант времени;

    - кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам, каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала;

    - спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны.

    Возможно комбинировать методы: ЧРК+ВРК.

    Радиорелейная связь - радиосвязь по линии (радиорелейная линия, РРЛ), образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци - и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

    РРЛ стали важной составной частью сетей электросвязи – ведомственных, корпоративных, региональных, национальных и даже международных, поскольку имеют ряд достоинств:

    Возможность быстрой установки оборудования при небольших капитальных затратах;

    Экономически выгодная, а иногда и единственная, возможность организации многоканальной связи на участках местности со сложным рельефом;

    Возможность применения для аварийного восстановления связи в случае бедствий, при спасательных операциях;

    Эффективность развертывания разветвленных цифровых сетей в больших городах и индустриальных зонах, где прокладка новых кабелей слишком дорога или невозможна;

    Высокое качество передачи информации по РРЛ, практически не уступающие ВОЛС и другим кабельным линиям.



    РРЛ связи позволяют передавать телевизионные программы и одновременно сотни и тысячи телефонных сообщений. Для таких потоков информации требуются полосы частот до нескольких десятков, а иногда и сотен мегагерц и соответственно несущие не менее нескольких гигагерц. Радиосигналы на этих частотах эффективно передаются лишь в пределах прямой видимости . Поэтому для связи на большие расстояния в земных условиях приходится использовать ретрансляцию радиосигналов. На радиорелейных линиях прямой видимости в основном применяют активную ретрансляцию , в процессе которой сигналы усиливаются.

    Протяженность пролетов R между соседними станциями зависит от профиля рельефа местности и высот установки антенн. Обычно ее выбирают близкой к расстоянию прямой видимости R 0 , км. Для гладкой сферической поверхности Земли и без учета атмосферной рефракции:

    где h 1 и h 2 – высоты подвеса передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности R 0 = 40…70 км, а h 1 и h 2 составляют 50…80 м.

    В зависимости от используемого механизма распространения радиоволн различают:

    - радиорелейную линию прямой видимости РРЛ (за счет земной радиоволны);

    - тропосферную радиорелейную линию ТРЛ (за счет тропосферной радиоволны).

    Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются только в пределах прямой видимости. Поэтому радиорелейную линию связи на большие расстояния строят в виде цепочки приемо-передающих радиорелейных станций (РРС ), в которой соседние РРС размещают на расстоянии, обеспечивающем радиосвязь прямой видимости (радиорелейной линией прямой видимости (РРЛ )).

    Тропосферная радиоволна распространяется между точками земной поверхности по траектории, лежащей целиком в тропосфере. (Тропосфера (др.-греч. Τροπή - «поворот», «изменение» и σφαῖρα - «шар») - нижний слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км. В тропосфере сосредоточено более 80% всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваются циклоны и антициклоны, а также другие процессы, определяющие погоду и климат. При подъёме через каждые 100 м температура в тропосфере понижается в среднем на 0,65° и достигает 220 К (-53° C) в верхней части).

    Энергия тропосферной радиоволны короче 100 см рассеивается на неоднородностях тропосферы. При этом часть передаваемой энергии попадает на приемную антенну РРС, расположенной за пределами прямой видимости на расстоянии 250...350 км . Цепочка таких РРС образует тропосферную радиорелейную линию (ТРЛ).

    По назначению радиорелейные системы связи делятся на три категории:

    - местные линии связи от 0,39ГГц до 40,5ГГц,

    - внутризоновые линии от 1,85ГГц до 15,35ГГц,

    - магистральные линии от 3,4ГГц до 11,7ГГц.

    (По диапазону рабочих частот РРЛ подразделяют на линии дециметрового диапазона и сантиметрового диапазонов. В этих диапазонах, решением ГКРЧ от апреля 1996 года для новых РРЛ определены диапазоны 8 (7.9-8.4); 11 (10.7-11.7); 13 (12.75-13.25); 15 (14.4-15.35); 18 (17.7-19.7); 23 (21.2-23.6); 38 (36.0-40.50) ГГц. Однако в России еще длительное время будут использоваться ранее построенные линии в диапазонах 1.5-2.1; 3.4-3.9; 5.6-6.4 ГГц. Новые РРС используются также в диапазоне 2.3-2.5 ГГц. Прорабатывается возможность использования диапазонов 2.5-2.7 и 7.25-7.55 ГГц.

    Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим (потери в атомах кислорода и в молекулах воды).

    Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате.

    Отрицательно на радиосвязь влияют гидрометеоры , к которым относятся капли дождя, снег, град, туман. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога, кислот или щелочей) и на значительно более низких частотах.

    Чем ниже диапазон, тем большую дальность связи можно обеспечить при тех же энергетических характеристиках оборудования, но переход на высокие диапазоны позволяет повысить пропускную способность систем.

    Антенны соседних станций располагают в пределах прямой видимости (за исключением тропосферных станций). Для увеличения длины интервала между станциями антенны устанавливают как можно выше - на мачтах (башнях) высотой 10-100 м (радиус видимости - 40-50 км ) и на высоких зданиях. Станции могут быть как стационарными, так и подвижными (на автомобилях).

    В зависимости от способа , принятого для формирования сигнала, различают:

    Аналоговые РРЛ(ТРЛ);

    Цифровые РРЛ(ТРЛ).

    АналоговыеРРЛ связи в зависимости от метода модуляции несущей:

    РРЛ с частотным разделением каналов (ЧРК) и частотной модуляцией (ЧМ) гармонической несущей,

    РРЛ с временным разделением каналов (ВРК) и аналоговой модуляцией импульсов, которые затем модулируют несущую частоту.

    В зависимости от числа организуемых каналов (N):

    Малоканальные - N =24;

    Со средней пропускной способностью - N=60...300;

    С большой пропускной способностью - N=600...1920.

    Цифровые радиорелейные линии (ЦРРЛ), импульсы (отсчеты сообщения) квантуются по уровням и кодируются.

    Цифровые РРЛ классифицируют по способу модуляции несущей:

    В зависимости от скорости передачи двоичных символов В:

    С малой - В <10 Мбит/с,

    Средней - В=10…100 Мбит/с,

    Высокой- В>100 Мбит/с пропускной способностью.

    Высокоскоростные РРС создаются практически только на основе SDH-технологии и имеют скорость передачи в одном стволе 155.52 Мбит/с (STM-1 ) и 622.08 Мбит/с в одном стволе (STM-4 ). Применяются для построения магистральных и зоновых линий, в качестве радиовставок в ВОЛС на участках со сложным рельефом, для сопряжения ВОЛС (STM-4 или STM-16) с сопутствующими локальными цифровыми сетями, а также для резервирования ВОЛС.

    (Синхронная Цифровая Иерархия (англ. SDH - Synchronous Digital Hierarchy) - это технология транспортных телекоммуникационных сетей. Стандарты СЦИ определяют характеристики цифровых сигналов, включая структуру фреймов (циклов), метод мультиплексирования, иерархию цифровых скоростей и кодовые шаблоны интерфейсов.

    Стандартизация интерфейсов определяет возможность соединения различного оборудования от разных производителей. Система SDH обеспечивает стандартные уровни информационных структур, то есть набор стандартных скоростей. Базовый уровень скорости - STM-1 155,52 Mбит/с. Цифровые скорости более высоких уровней определяются умножением скорости потока STM-1, соответственно, на 4, 16, 64 и т. д.: 622 Мбит/с (STM-4),2,5 Гбит/с (STM-16), 10 Гбит/с (STM-64) и 40 Гбит/с (STM-256)).

    Принципиальным отличием радиорелейной станции от иных радиостанций является дуплексный режим работы, то есть приём и передача происходят одновременно (на разных несущих частотах).

    Протяженность наземной линии радиорелейной связи - до 10000 км, ёмкость - до нескольких тысяч каналов тональной частоты в аналоговых линиях связи, и до 622 мегабит в цифровых линиях связи. В общем случае, протяжённость и ёмкость (скорость передачи данных) находятся в обратно пропорциональной зависимости друг от друга: как правило, чем больше расстояние, тем ниже скорость.

    В Российской Федерации для вновь вводимых магистральных радиорелейных линий связи определены скорости передачи, равные 155 Мбит/с (поток STM-1 синхронной цифровой иерархии, SDH) или 140 Мбит/с (поток Е4 плезиохронной цифровой иерархии, PDH, передаваемый в составе сигнала STM-1).

    В СССР начало развитию радиорелейной промышленности было положено в середине 50-х годов . Причина - дешевизна радиорелейной связи по сравнению с кабельными линиями, особенно в условиях огромных пространств с неразвитой инфраструктурой и сложной геологической структурой местности. Первая магистральная радиорелейная система Р-600 создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем «КУРС» . Все это позволило в 60-70-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяжённость которой составляла около 10 тыс. км , емкостью каждого ствола равной 14400 каналов тональной частоты. Суммарная протяженность РРЛ в СССР превысила к середине 70-х годов 100 тыс. км .


    Радиорелейная связь это один из видов радиосвязи, образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци- и санти-метровых волнах (от сотен мегагерц до десятков гигагерц).

    Достоинства радиорелейной связи:

    Возможность организации многоканальной связи и передачи любых сигналов, как узкополосных, так и широкополосных;

    Возможность обеспечения двухсторонней связи (дуплексной) связи между потребителями каналов (абонентами);

    Возможность создания 2-х проводных и 4-х проводных выходов каналов связи;

    Практическое отсутствие атмосферных и промышленных помех;

    Узконаправленность излучения антенных устройств;

    Сокращение времени организации связи в сравнении с проводной связью.

    Недостатки радиорелейной связи:

    Необходимость обеспечения прямой геометрической видимости между антеннами соседних станций;

    Необходимость использования высокоподнятых антенн;

    Использование промежуточных станций для организации связи на большие расстояния, что является причиной снижения надежности и качества связи;

    Громоздкость аппаратуры;

    Сложность при строительстве радиорелейных линий в труднодоступной местности;/div>

    По назначению радиорелейные системы связи делятся на три категории, каждой из которых на территории России выделены свои диапазоны частот:

    местные линии связи от 0,39 ГГц до 40,5 ГГц внутризоновые линии от 1,85 ГГц до 15,35 ГГц магистральные линии от 3,4 ГГц до 11,7 ГГц

    Аппаратура РРЛ строится обычно по модульному принципу. Функционально выделяют модуль стандартных интерфейсов, обычно включающих в себя один или несколько интерфейсов PDH (E1, E3), SDH (STM-1), Fast Ethernet или Gigabit Ethernet или сочетание перечисленных интерфейсов, а также интерфейсы управления и мониторинга РРЛ (RS-232 и др.) и интерфейсы синхронизации. Задача модуля стандартных интерфейсов заключается в коммутации интерфейсов между собой и другими модулями РРЛ.

    Конструктивно модуль стандартных интерфейсов может представлять собой один блок или состоять из нескольких блоков, устанавливаемых в единое шасси. В технической литературе модуль стандартных интерфейсов обычно называют блоком внутреннего монтажа(IDU) т.к. обычно подобный блок устанавливается в аппаратной РРС или в телекоммуникационном контейнере-аппаратной). Потоки данных от нескольких стандартных интерфейсов объединяются в блоке внутреннего монтажа в единый кадр. Далее к полученному кадру добавляется служебные каналы, необходимые для управления и мониторинга РРЛ. Суммарно все потоки данных образуют радиокадр. Радиокадр от блока внутреннего монтажа как правило на промежуточной частоте передается к другому функциональному блоку РРЛ -радиомодулю(ODU). Радиомодуль выполняет помехоустойчивое кодирование радиокадра, модулирует радиокадр согласно используемому виду модуляции, а также преобразует суммарный поток данных с промежуточной частоты на рабочую частоту РРЛ. Кроме того часто радиомодуль выполняет функцию автоматической регулировки усиления мощности передатчика РРЛ.

    Конструктивно радиомодуль представляет собой один герметичный блок, имеющий один интерфейс, соединяющий радиомодуль с блоком внутреннего монтажа. В технической литературе радиомодуль обычно называют блоком наружного монтажа, т.к. в большинстве случаев радиомодуль устанавливается на радиорелейной башне или мачте в непосредственной близости от антенны РРЛ. Расположение радиомодуля в непосредственной близости от антенны РРЛ обычно обусловлено стремлением уменьшить затухание высокочастотного сигнала в различных переходных волноводах (для частот больше 6 - 7 ГГц) или коаксиальных кабелях (для частот меньших 6 ГГц).

    Для особо тяжелых условий где затруднено обслуживание средств связи, применяется нижнее расположение радиомодулей. Рабочая частота передается к антенне по волноводу. Данный вариант расположения блоков позволяет обслуживать РРС (производить замену радиомодулей) без выхода персонала на антенно-мачтовые сооружения.

    Конфигурации и методы резервирования

    Состояние, когда радиорелейная линия не может обеспечить требуемое качество каналов для передачи информации называется неготовностью, а отношение времени неготовности к общему времени функционирования линии называется коэффициентом неготовности.

    На наиболее важных направлениях с целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования оборудования РРЛ. Обычно конфигурации с резервированием оборудования РРЛ обозначают в виде суммы N+M, где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ (совокупность оборудования, обеспечивающего связь в каждом направлении по одному радиочастотному каналу, называется стволом РРЛ). После суммы добавляют аббревиатуру HSB, SD ил FD, обозначающую метод резервирования стволов РРЛ.

    Уменьшение коэффициента неготовности достигается с помощью дублирования функциональных блоков РРЛ или использованием отдельного резервного ствола РРЛ.

    Конфигурация 1+0

    Конфигурация оборудования РРЛ с одним стволом без резервирования.

    Конфигурация N+0

    Конфигурация оборудования РРЛ с N стволами без резервирования.

    Конфигурация N+0 представляет собой несколько частотных стволов РРЛ или стволов с разной поляризацией, работающих через одну антенну. В случае использования нескольких частотных стволов разделение стволов осуществляется с помощью делителя мощности и частотных полосовых фильтров. В случае использования стволов РРЛ с разной поляризацией разделение стволов осуществляется применением специальных антенн, поддерживающими прием и передачу сигналов с разными поляризациями (например, кроссполяризационных антенн, имеющих одинаковый коэффициент усиления для сигнала с горизонтальной и вертикальной поляризацией).

    Конфигурация N+0 не обеспечивает резервирования РРЛ, каждый ствол представляет собой отдельный физический канал передачи данных. Данная конфигурация обычно используется для увеличения пропускной способности РРЛ. В оборудовании РРЛ отельные физические каналы передачи данных могут быть объединены в один логический канал.

    Конфигурация N+1 HSB (Горячий резерв Hot StandBy)

    Конфигурация оборудования РРЛ с N стволами и одним резервным стволом, находящимся в горячем резерве. Фактически резервирование достигается путем дублирования всех или части функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в горячем резерве замещают неработоспособные блоки.

    Конфигурация N+M HSB (Горячий резерв Hot StandBy)

    Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

    В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

    РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

    Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

    где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

    Рис. 11.1. Условное изображение РРЛ.

    Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

    Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

    Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

    На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


    С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

    Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

    1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
    5,8 - передатчики.

    На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

    ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



    Рис. 11.3. Схемы распределения частот в РРЛ.

    Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

    Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

    Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

    Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

    Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.

    Определение радиорелейной связи противопоставляют прямой радиосвязи. Сообщение абонента многократно передаётся промежуточными звеньями цепи, образующими радиорелейную линию (РРЛ). Название заложено англичанами: relay - смена. Физические особенности распространения заставили инженеров применять ультракороткие волны (УКВ): дециметровые, сантиметровые, реже, метровые. Потому что длинные самостоятельно способны обогнуть Земной шар. Причина применения радиорелейных линий объясняется необходимостью заложить большой объем информации, невозможный на низких частотах. Ограничения объясняет теорема Котельникова.

    Примечание. Тропосферную связь считают подвидом радиорелейной.

    Достоинства метода

    1. Первое преимущество названо – возможность заложить больший объем информации. Число каналов пропорционально ширине пропускания приёмопередающей аппаратуры. Величину повышает рост частоты. Упомянутый факт обусловлен формулами, описывающими колебательный контур, иные избирательные участки электрической цепи.
    2. Линейность распространения УКВ обусловливает высокие направленные свойства. Направленность растёт с увеличением площади антенны относительно длины волны. Короткие проще охватить тарелкой. Например, дальняя связь осуществляется длинами, достигающими километров. Сантиметровые, дециметровые волны легко охватываются сравнительно малыми параболоидами, значительно снижая требуемую мощность (за исключением случая тропосферной передачи информации), уровень помех. Шумы фактически ограничены внутренней неидеальностью входных каскадов приёмника.
    3. Устойчивость объясняется фактом прямой видимости тандема передатчик-приёмник. Мало влияния оказывают погода, время дня/года.

    Указанные преимущества уже в начале второй половины XX века позволяли экономистам сопоставлять экономическую эффективность цепочки с кабелем. Допускалась возможность передачи аналоговых телевизионных каналов. Оборудование вышек значительно сложнее регенераторов. Однако кабелю восполнять сигнал приходится каждые 6 км. Вышки обычно разделены дистанциями 50-150 км, расстояние (км) ограничено величиной, равной квадратному корню из высоты вышки (м), умноженному на 7,2. Наконец, вечная мерзлота сильно усложняет прокладку кабельных линий, лепту вносят болота, скалы, реки.

    Эксперты отмечают простоту развёртывания системы, экономию цветных металлов:

    • Медь.
    • Свинец.
    • Алюминий.

    Отмечается малая эффективность автономных вышек. Неизбежно требуется обслуживающий персонал. Необходимо людей расквартировать, назначить несение вахты.

    Принцип действия

    Линия обычно реализует дуплексный (двунаправленный) режим передачи информации. Чаще применяли частотное деление каналов. Первыми европейскими соглашениями установили участки спектра:

    • Дециметровые волны:
    1. 460-470 МГц.
    2. 1300-1600 МГц.
    3. 1700-2300 МГц.

    • Сантиметровые:
    1. 3500-4200 МГц.
    2. 4400-5000 МГц.
    3. 5925-8500 МГц.
    4. 9800-10.000 МГц.

    Метровые волны способны огибать препятствия, допускается использование ввиду отсутствия непосредственной видимости. Частоты выше 10 ГГц невыгодны, поскольку превосходно поглощаются осадками. Послевоенные конструкции компании Белла (11 ГГц) оказались неконкурентоспособными. Участок спектра чаще выбирают сообразно получению необходимого числа каналов.

    История

    Цифровой набор предложили раньше импульсного. Однако реализация идеи запоздала на 60 лет. Судьбу антибиотиков повторяет радиорелейная связь.

    Изобретение идеи

    Историки единогласно отдают приоритет открытия Иоганну Маттаушу, написавшему (1898) в журнале Заметки электротехника (том 16, 35-36) соответствующую публикацию. Критики отмечают несостоятельность теоретической части, предлагавшей создать телеграфные ретрансляторы. Однако год спустя Эмилем Гуарини-Форестио построен первый работоспособный экземпляр. Уроженец итальянской общины Фазано (Апулия), будучи студентом, 27 мая 1899 года запатентовал в бельгийском подразделении радио-репитер. Дату считают официальным днём рождения радиорелейной связи.

    Устройство представлено комбинацией приёмопередающей аппаратуры. Конструкция производила демодуляцию принятого сигнала, последующее формирование, излучение ненаправленной антенной, формируя широковещательный канал. Фильтр защищал приёмный тракт от мощного излучения передатчика.

    Ощущая недостатки представленной конструкции, Гуарини-Форезио (декабрь 1899) патентует (Швейцария, №21413) конструкцию направленной спиральной антенны (круговая поляризация), снабжённой металлическим рефлектором. Устройство исключало взаимный перехват вышками чужих сообщений. Дальнейшее усовершенствование произведено тесным сотрудничеством с Фернандо Понтселе. Вместе изобретатели провели попытку установить связь меж Брюсселем и Антверпеном, используя Малины промежуточным пунктом, местом базирования ретранслятора.

    Конструкцию снабдили цилиндрическими антеннами диаметром 50 см, снабдив аппаратурой высотное здание. Отталкиваясь от результатов, полученных жарким июнем 1901 года, началась подготовка линии Париж – Брюссель дальностью 275 км. Шаг установки ретрансляторов составил 27 км. Декабрь принёс задумке успех, обеспечив время задержки сообщения 3..5 секунд.

    Завидя радужные перспективы, Гуарини витал в облаках, предвкушая коммерческий успех (эквивалентный прибылям компании Белла) радиорелейной связи, устраняющей проблемы дальности. Реальность внесла коррективы. Потребовался широкий ассортимент решений:

    1. Питание приёмопередающей аппаратуры.
    2. Конструирование более удобоваримых антенн.
    3. Снижение стоимости оборудования.

    Лишь 30 лет спустя изобретение подходящих электронных высокочастотных ламп позволило идее выплыть на поверхность. Изобретатель удостоился ордена Короны Италии.

    Ламповые конструкции покоряют Ла-Манш

    В 1931 году англо-французский консорциум (Компания международного телефона и телеграфа, Англия; Лаборатория телефонного оборудования, Франция), возглавляемый Андрэ Клавиром, покорил Ла-Манш (Дувр-Кале). Событие осветил журнал Radio News (август, 1931 г, стр. 107). Напомним суть проблемы: прокладка подводного кабеля обходится дорого, разрыв линии означает необходимость тратить значительные средства на ремонт. Инженеры двух стран решили преодолеть водное пространство (40 км) семидюймовыми (18 см) волнами. Экспериментаторы передали:

    1. Телефонный разговор.
    2. Кодированный сигнал.
    3. Изображения.

    Система параболических антенн диаметром 10 футов (19-20 длин волн) давала два параллельных луча, конфигурация автоматически блокировала явление интерференции. Мощность потребления передатчика составила 25 Вт, КПД – 50%. Положительные результаты заставили предполагать возможность генерации более высоких частот, включая оптические. Сегодня очевидна нецелесообразность подобных замашек. Технические характеристики используемых вакуумных ламп замалчивались организаторами, упоминался лишь общий принцип действия, изобретённый Хайнрихом Баркхаузеном (Университет Дрездена), усовершенствованный французским экспериментатором Пирье. Затейники выражали благодарность учёным-предшественникам:

    1. Глагольева-Аркадьева А.А. изобрела (1922) микроволновый генератор (5 см..82 мкм) из взвешенных в масляном сосуде алюминиевых опилок.
    2. Профессор Эрнест Николс, доктор Тир проводили аналогичные исследования в США, добившись генерации волн, сравнимых с инфракрасным диапазоном.
    3. Разработчикам помогли бесчисленные эксперименты Густава Ферье, занимавшегося миниатюризацией вакуумных приборов в попытке снизить длину волны.

    Ключом стала идея Баркхаузена получать колебания прямо внутри лампы (принцип действия современных магнетронов). Наблюдатели сразу отметили возможность закладки множества каналов. Дециметровое вещание тогда полностью отсутствовало. Диапазон на четыре порядка шире волн, широко используемых тогда телевидением. Резкий рост числа каналов вещания становился настоящей проблемой. Открываемые дециметровым спектром возможности явно превышали потребности.

    Уже тогда заметка предполагала использование атомных переходов для генерации волн высокой частоты. Обсуждалось рентгеновское излучение. Журналисты окончили всеобщим призывом инженеров осваивать открывающиеся перспективы.

    Дубль два

    Несколькими годами позже опыты возобновились. Линия длиной 56 км соединила берега пролива:

    1. Община святого Инглевера (Франция).
    2. Замок Лимпн (Кент, Великобритания).

    Создатели линии рассчитывали серьёзно устроиться, поставив две стальные вышки, украшенные параболическими антеннами диаметром 9,75 фута. Генератор спрятался позади рефлектора, тонкое жало волновода пробивало тарелку, облучатель сформирован шаровидным зеркалом. Оператору построили наземный пункт управления, оборудовав необходимыми панелями, включая регулятор напряжения. Функциональный набор предполагал использование азбуки Морзе, факса, телерадиовещания.

    Супергетеродинный приёмник с кварцевой стабилизацией понижал входной сигнал до 300 кГц, декодируя амплитудную модуляцию. Согласно заявлениям организаторов, оснастка призвана заменить морские телефонные, телеграфные кабели. Американская компания Белла построила аналогичную систему, форсировав залив Кейп-Код.

    Технологии радаров Второй мировой

    Начавшаяся Вторая мировая война подстегнула развитие микроволновых генераторов. Помогли начинаниям американские (Стэнфорд) изобретатели клистрона (1937) Рассел и Зигмунд Варианы. Новые лампы помогли создать усилители, генераторы СВЧ диапазона. Ранее повально применяли трубки Баркхаузена-Курца, магнетроны с расщепленным анодом, выдающие слишком малую мощность. Демонстрация прототипа успешно прошла 30 августа 1937 года. Западные разработчики немедля занялись построением станций воздушного обзора.

    Братья создали организацию, занимающуюся коммерциализацией изобретения. Линейный ускоритель протонов помогал медикам лечить некоторые заболевания (рак). Принцип действия использует концепцию модуляции скорости (1935) Оскара Хайля и его жены. Хотя эксперты предполагают полную неосведомлённость Варианов относительно существования сего научного труда.

    Работы американского физика Хансена (1939) по ускорению частиц могли быть использованы с целью замедления электронов, передающих энергию выходному тракту радиочастоты. Резонатор Хансена иногда называют румбатроном. Клистроны использовались преимущественно фашистами, станции союзников начинялись магнетронами. Армия США построила мобильные системы связи на базе грузовых машин, переплывшие океан помогать союзникам. Армейцам понравилась идея быстро налаживать связь на дальние дистанции. После войны компания AT&T применяла 4-ваттные клистроны, создавая радиорелейную сеть, покрывающую Северную Америку. Собственную инфраструктуру, благодаря 2К25, построил Вестерн Юнион.

    Главным двигателем бурного прогресса считают идею резкого расширения объёма каналов, покупаемого низкой стоимость возведения вышек. Релейные сети (РРЛС) окутали три линии обороны Северной Америки времён Холодной войны. Прототип TDX разработали (1946) Лаборатории Белла. Система быстро совершенствовалась, обновляя вакуумные лампы:

    • 416В.
    • 416С.

    Послевоенные попытки организовать связь наталкивались на необходимость выбора элементной базы. Эксперты всерьёз обсуждали конструкции ламп, клистронов, жаловались на влияние дождя. Типичные проблемы незащищённой аналоговой связи. Первые линии (включая оборонные сети ПВО США) питались дизельным топливом. Башня непременно вмещала нижний этаж-хранилище горюче-смазочных материалов, чаще ядовитых.

    Угасание технологии

    Переход на сантиметровый диапазон требует упразднить металлокерамические, маячковые триоды. Взамен вводят клистроны, лампы бегущей волны. Антенные устройства, наоборот, выходят миниатюрнее. Сантиметровый диапазон сильно увеличивает потери родных спектру ДМВ коаксиальных соединений. Взамен решили ставить волноводы. Третье поколение TDX перешло на твердотельную электронику. Мобильные варианты передавали 24 канала с частотным делением. Каждый вмещал 18 телетайпных линий. Аналогичные системы разрабатывались повсеместно. Лишь в 1980-е пользу технологии подвергли сомнению, ввиду внедрения спутниковой связи. Оптический кабель перекрыл возможности радиолиний.

    Это интересно! Группа спутников Риолит занималась перехватом советской радиорелейной связи.

    Современное состояние

    Ныне идея повсеместно применяется мобильными сетями наземного базирования. Учёные чаще рассматривают возможность переноса энергии. Источником идеи следует считать Николу Теслу, задумавшего ещё в начале XX века покрыть территорию США сетью передатчиков. Изобретатель демонстрировал полную безопасность высокочастотных разрядов. Сегодня эксперты подразумевают перенос действа в открытый космос.

    Передача энергии

    Открытие электромагнетизма заставило учёных ломать голову, осмысливая способы передачи энергии. Первым реализованным методом назовём тороидальный трансформатор Майка Фарадея (1831). Рассмотрев уравнения Максвела, Джон Генри Пойнтинг создал теорему (1884), описывающую процесс переноса мощности электромагнитной волной. Четыре года спустя Хайнрих Рудольф Герц подтвердил теорию практикой, наблюдая искровой разряд приёмного вибратора. Проблемой занимались Вильям Генри Вэрд (1871), Махлон Лумис (1872), оба желали использовать потенциал атмосферы Земли.

    «Секретные» книги полны проектами Теслы победить фашистскую авиацию беспроводными излучателями. Факты упоминают посмертное тотальное изъятие бумаг изобретателя американскими спецслужбами. Катушки Теслы шутя позволяли получить высокочастотные разряды молнии. Башня Ворденклиф (1899) серьёзно пугала округу, производителей меди наводнила ужасом мысль беспроводной передачи. Тесла дистанционно поджигал трубки Гисслера (1891), лампочки накала.

    Сербский изобретатель распространил методику генерации колебаний резонансными контурами LC. Методика гениального Теслы предусматривала запуск воздушных шаров на высоты 9,1 км. Пониженное давление облегчало передачу мегавольтных напряжений. Второй идеей изобретатель задумал заставить электрический потенциал Земного шара вибрировать, снабжая станции планеты энергией. Задуманная Мировая Беспроводная система могла также передавать информацию. Неудивителен испуг инвесторов, набивавших карман производством меди.

    Метод питания поездов напряжением частотой 3 кГц запатентован Морисом Хатином и Морисом Лебланком (1892). В 1964 году Вильям Браун создал модель игрушечного вертолёта, питаемого энергией электромагнитной волны. Технологии RFID (например, ключ домофона) изобретены в середине 70-х:

    1. Марио Кардулло (1973).
    2. Коэлле (1975).

    Позже появились карты доступа. Сегодня технологию заездили мобильные гаджеты, подзаряжающиеся беспроводным путём. Аналогичная технология используется индукционными варочными панелями, плавильными печами. Инженеры активно реализуют идеи компьютерных игр начала второго тысячелетия, планируя создать орбитальные солнечные электростанции, обороняемые боевыми дронами, питаемыми энергией электромагнитных волн. Большинству известен лазерный скальпель, использующий принцип передачи мощности коже пациента.

    Это интересно! Концепцию беспроводных дронов (1959) выдвинула фирма Радеон, выполняя проект Министерства обороны. Канадский Исследовательский центр связи (1987) создал первый прототип, месяцами исполнявший возложенные функции.

    Консорциум беспроводной передачи энергии

    17 декабря 2008 года сформирована организация, призванная рекламировать стандарт беспроводной зарядки устройств Qi. Свыше 250 мировых компаний поддержали идею. Позже проект одобрили Нокиа, Хуавей, Вистеон. Заранее стали известны планы оснастить технологией мобильные устройства. В октябре 2016 обнародовали намерение создать зарядные точки доступа.

    24 компании составили «стальной стержень» группы лоббистов. 2017 год пополнил список маркетинговыми менеджерами Apple. Касательно безопасности методики мнения учёных разделились. Эксперты сошлись в одном: вскорости методика индуктивной подзарядки станет общепринятой.

    Связь с релейными системами

    Подобно тому, как первые экспериментаторы преодолели Ла-Манш, ранние орбитальные солнечные электростанции станут питать спутники, продляя кардинально срок службы оборудования. Затем передача энергии станет глобальной, охватив все человеческие устройства. Технологию проще всего именовать релейной. Энергия станет приниматься, усиливаться, передаваться далее.

    Это интересно! Питер Гласер первым (1968) предложил фармить энергию Солнца орбитальными заводами, передавая луч наземным станциям.

    Лазерный луч эффективно переносит энергию. Мощность 475 Вт настигла мишень, преодолев многие мили свободного пространства. Система показала КПД 54%. Лаборатории НАСА передали 30 кВт, применив частоту 2,38 ГГц (спектр микроволновой печи) тарелкой диаметром 26 метров. Итоговый КПД достиг 80%. Япония (1983) затеяла исследования передачи энергии слоем ионосферы, полной свободных носителей заряда.

    Прототип создан командой Марина Соляшича (Массачусетский технологический университет). Резонансный передатчик отправил 60 Вт энергии на частоте 10 МГц, преодолев дистанцию 2 метра, достигнув КПД 40%. Год спустя группа Грега Лея и Майка Кеннана (Невада), используя частоту 60 кГц, покорила дальность 12 метров. Полагаем, новейшие разработки быстро засекретят.

    Обнародованную историю завершает создание НАСА летательного аппарата (2003), питаемого излучением лазера. Анонсированный 12 марта 2015 года проект JAXA призван реализовать идеи Николы Тесла.