• Составляющие ос. Назначение операционной системы. Операционная система linux

    Особое место среди программных средств всех типов занимают операционные системы, являясь ядром .

    Операционная система (ОС) – это комплекс программ, обеспечивающих:

    • управление ресурсами, т.е. согласованную работу всех аппаратных средств компьютера;
    • управление процессами, т.е. выполнение программ, их взаимодействие с устройствами компьютера, с данными;
    • пользовательский интерфейс, т.е. диалог пользователя с компьютером, выполнение определенных простых команд – операций по обработке информации.

    ОС – операционная среда, среда обитания (для программ), имеет свои законы.

    ОС – это набор программ, обеспечивающий возможность использования аппаратуры ПК, а также, обеспечивает совместное функционирование всех устройств ПК и предоставляет пользователю доступ к его ресурсам.

    ОС является базовой и необходимой составляющей программного обеспечения ПК

    Операционная система – наиболее машиннозависимый вид программного обеспечения, ориентированный на конкретные модели компьютеров, поскольку они напрямую управляют их устройствами или обеспечивают интерфейс между пользователем и аппаратной частью компьютера.

    ОС –набор программных инструментов, ко­торые дают возможность пользователю использовать возможности компьютера.

    ОС – основной программный инструмент, «вдыхающий жизнь»в компьютер. Без нее компьютер просто не будет работать. ОС контролирует операции обмена с дисками, организует вывод информации на экран, «понимает» клавиатуру и т.п.

    Задачи, реализуемые ОС

    1 . Поддержка работы всех программ и организация их взаимодействия с устройствами ПК:

      обеспечение эффективного выполнения операций ввода и вывода информации (связь с УВВ);

      распределение памяти и организация хранения данных;

      обеспечение взаимодействие программ и данных, а также взаимодействие программ друг с другом;

      выявление различных событий, возникающих в процессе работы, и соответствующая реакция на них.

    2. Предоставление пользователю возможности общего управления ПК:

      определение интерфейса пользователя, т.е. создание удобной и комфортной среды общения человека с ПК;

      обеспечение разделения аппаратных ресурсов между пользователями и задачами, планирование доступа пользователей к общим данным и предоставление возможности работы с ними в режиме коллективного пользования (работа в сетях).

    Современные ОС обеспечивают:

    1. дружественность, простоту и естественность интерфейса;
    2. шифровку данных для защиты от несанкционированного доступа;
    3. автоматическое распределение мощностей по обработке данных;
    4. поддержку компьютерных сетей и средств оперативной обработки данных в режиме реального времени;
    5. возможность использования отдельных ПК в качестве «интеллектуальных» терминалов мощных компьютерных сетей;
    6. поддержку работы СУБД и других мощных прикладных программ;
    7. возможность моделирования виртуальных машин, (когда пользователь работает как бы не с самой машиной, а с ее моделью. Для этого используются эмуляторы).

    Состав ОС

    В настоящее время используется много типов различных операционных систем для ЭВМ различных видов, однако в их структуре существуют общие принципы. В составе многих операционных систем можно выделить некоторую часть, которая является основой всей системы и называется ядром . В состав ядра входят наиболее часто используемые модули, такие как модуль управления системой прерываний, средства по распределению таких основных ресурсов, как ОП и процессор. Программы, входящие в состав ядра, при загрузке ОС помещаются в оперативную память, где они постоянно находятся и используются при функционировании ЭВМ. Такие программы называют резидентными.

    Ядро (резидентная часть ОС) – постоянно занимает раздел оперативной памяти. В ОП оно загружается с системного диска при включении компьютера. Эта процедура называется первоначальной загрузкой.

    Ядро ОС обеспечивает базовые функции для окружающего программного обеспечения и допускает расширение обслуживающей части ОС.

    Окружением ядра ОС являются утилиты, редакторы, компиляторы и другие программные средства, составляющие обслуживающую часть ОС.

    Важной частью ОС является командный процессор – программа, отвечающая за интерпретацию и исполнение простейших команд, подаваемых пользователем, и его взаимодействие с ядром ОС.

    Командный процессор – специальная программа, запрашивающая и выполняющая команды пользователя.

    Выполняемые функции:

    1. обеспечивает ввод команды и проводит ее анализ на правильность;
    2. обеспечивает выполнение команды, если она была введена правильно, либо дает сообщение о возникшей конфликтной ситуации.

    Кроме того, к операционной системе следует относить богатый набор утилит – обычно небольших программ, выполняющих различные обслуживающие функции.

    Упрощенно структуру ОС можно представить в виде схемы

    Файловая система BDOS – базовая дисковая операционная система, которая управляется с помощью специальных программных модулей. Основные функции : работа с файлами, распределение памяти, поддержка выполнения программ, загрузка в память данных, контроль за выполнением программ и т.п.

    Драйверная система BIOS – базовая система ввода – вывода. Представляет собой набор специальных программ, называемых драйверами.

    Как известно, ПК может иметь большой набор разнообразных внешних устройств. Каждое внешнее устройство характеризуется своей собственной пропускной способностью и структурой передаваемых/принимаемых данных. Именно по этому каждое внешнее устройство имеет свой собственный драйвер.

    Драйверы устройств – специальные программы, обеспечивающие управление работой устройств и согласование информационного обмена. Также позволяющие производить настройку параметров устройств

    Драйвер – управляющая программа, обслуживающая аппаратный модуль.

    Драйверы наиболее часто используемых устройств (дисплея, клавиатуры, дисководов, а иногда и принтера) составляют главную часть BIOS.

    Если BDOS является практически не изменой частью ОС для всех ПК, которые с ней работают, то BIOS может существенно варьироваться даже на одном и том же ПК в зависимости от типа переключаемой периферии.

    Итак, структура операционной системы состоит:

    Ядро – переводит команды с языка программ на язык «машинных кодов», понятный компьютеру (командный интерпритатор).
    Драйверы – программы, управляющие устройствами.
    Интерфейс – оболочка, с помощью которой пользователь общается с компьютером.

    Загрузочные файлы ОС хранятся во внешней памяти. (гибкие, жесткие, оптические диски). Однако, любые программы, как и сама ОС могут быть выполнены только в оперативной памяти. Поэтому их нужно туда загрузить.

    1. При включении ПК первой активизируется микросхема с BIOS (Basic Input / Output System ) базовая система ввода вывода . BIOS запускает программу POST, которая тестирует аппаратные средства ПК. Для установки даты и времени, а также для настройки работы железа, с помощью клавиши Del можно загрузить утилиту Setup .
    2. После тестирования BIOS начинает поиск загрузчика ОС (Master Boot Record ), обращаясь поочередно к FDD, HDD, CD-ROM.

      Найдя на системном диске программу — загрузчик она загружается в оперативную память и ей передается управление работой ПК.

      Программа ищет файлы ОС на системном диске и загружает их в оперативную память в качестве программных модулей.
      После окончания загрузки ОС передает управление командному процессору.

    Принципы функционирования операционных систем

    Понятие процесса играет ключевую роль и вводится применительно к каждой программе отдельного пользователя. Управление процессами (как целым, так и каждым в отдельности) – важнейшая функция ОС. При исполнении программ на центральном процессоре следует различать следующие характерные состояния:

    • порождение – подготовку условий для исполнения процессором;
    • активное состояние (или «Счет») – непосредственное исполнение процессором;
    • ожидание – по причине занятости какого-либо требуемого ресурса;
    • готовность – программа не исполняется, но все необходимые для исполнения программы ресурсы, кроме центрального процессора, предоставлены;
    • окончание – нормальное или аварийное завершения исполнения программы, после которого процессор и другие ресурсы ей не предоставляются.

    Физические ресурсы – реальные устройства компьютера.

    Средствами современных операционных систем могут создаваться и использоваться виртуальные (воображаемые) ресурсы, являющиеся моделями физических.

    По значимости виртуальные ресурсы – одна из важнейших концепций построения современных ОС.

    Виртуальный ресурс представляет собой модель некоего физического ресурса, создаваемую с помощью другого физического ресурса. Например, характерным представителем виртуального ресурса является оперативная память. Компьютеры, как правило, располагают ограниченной по объему ОП (физической). Функционально ее объем может быть увеличен путем частичной записи содержимого ОП на магнитный диск. Если этот процесс организован так, что пользователь воспринимает всю расширенную память как оперативную, то такая «оперативная» память называется виртуальной .

    Виртуальная память – часть памяти, превышающая физический объем оперативной памяти, установленной в компьютере, и которую ОС эмулирует, используя пространство на жестком диске (файл подкачки). Программы, выполняющиеся под управлением Windows, воспринимают виртуальную память как оперативную.

    Файл подкачки – постоянный или временный файл на жестком диске, который используется ОС для эмуляции оперативной памяти.

    Наиболее законченным проявлением концепции виртуальности является понятие виртуальной машины, являющееся исходной при программировании на языках высокого уровня, например, Паскале. Виртуальная машина есть идеализированная модель реальной машины, изолирующая пользователя от аппаратных особенностей конкретной ЭВМ, воспроизводящая архитектуру реальной машины, но обладающую улучшенными характеристиками:

    • бесконечной по объему памятью с произвольно выбираемыми способами доступа к ее данным;
    • одним (или несколькими) процессами, описываемыми на удобном для пользователя языке программирования;
    • произвольным числом внешних устройств произвольной емкости и доступа.

    Концепция прерываний выполнения программ является базовой при построении любой операционной системы.

    Из всего многообразия причин прерываний необходимо выделить 2 вида: первого и второго рода. Системные причины прерываний первого рода возникают в том случае, когда у процесса, находящегося в активном состоянии, возникает потребность либо получить некоторый ресурс или отказаться от него, либо выполнить над ресурсом какие-либо действия. К этой группе относят и, так называемые, внутренние прерывания , связанные с работой процессора (например, арифметическое переполнение или исчезновение порядка в операциях с плавающей запятой). Системные причины прерывания второго рода обусловлены необходимостью проведения синхронизации между параллельными процессами.

    При обработке каждого прерывания должна выполняться следующая последовательность действий:

    • восприятие запроса на прерывание;
    • запоминание состояния прерванного процесса, определяемое значением счетчика команд и других регистров процессора;
    • передача управления прерывающей программе, для чего в счетчик команд заносится адрес, соответствующий данному типу прерывания;
    • обработка прерывания;
    • восстановление прерванного процесса.

    В большинстве ЭВМ первые три этапа реализуются аппаратными средствами, а остальные – блоком программ обработки прерываний операционной системы.

    Классификация ОС

    1. По количеству одновременно работающих пользователей:

    • однопользовательские;

      (предназначены для обслуживания одного клиента)

    • многопользовательские

      (рассчитаны на группу пользователей одновременно).

    Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей.

    2. По числу задач, одновременно выполняемых под управлением ОС:

    • однозадачные ;
    • многозадачные .

    В многозадачном режиме каждой задаче (программе, приложению) поочередно выделяется какая-то доля процессорного времени. Поскольку процесс переключения идет очень быстро, а выделяемые задачам доли процессорного времени достаточно малы, то для пользователя создается впечатление одновременного выполнения нескольких задач.

    Можно одновременно запустить на счет математическую систему, включить принтер для печати текста, запустить проигрыватель музыкальных произведений, вести поиск вирусов и рисовать в графическом редакторе или раскладывать пасьянс.

    При многозадачном режиме:

    • в оперативной памяти находится несколько заданий пользователей;
    • время работы процессора разделяется между программами, находящимися в оперативной памяти и готовыми к обслуживанию процессором;
    • параллельно с работой процессора происходит обмен информацией с различными внешними устройствами.

    Различают вытесняющую и невытесняющую многозадачность.

    При работе ЭВМ важнейшим разделяемым ресурсом является процессорное время. Распределение процессорного времени между несколькими программами может осуществляться двумя способами.

    Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования вычислительных процессов . При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой процесс принимается операционной системой, а не самим активным процессом.

    Многозадачные ОС подразделяются на три типа в соответствии с использованными при их разработке критериями эффективности:

    • системы пакетной обработки;
    • системы разделения времени;
    • системы реального времени.

    Системы пакетной обработки предназначаются для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью таких систем является решение максимального числа задач в единицу времени. Для достижения этой цели используется следующая схема функционирования.

    В начале работы формируется пакет заданий (мультипрограммная смесь). В нем желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом информации. Выбор нового задания из пакета зависит от внутренней ситуации, складывающейся в системе, т.е. выбирается «выгодное» для ОС задание. Следовательно, в таких ОС невозможно гарантировать выполнение того или иного задания в течение определенного периода времени.

    Взаимодействие пользователя с вычислительной машиной, на которой установлена ОС пакетной обработки, сводится к тому, что пользователь приносит задание, отдает его диспетчеру-оператору, а в конце дня получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.

    ОС разделения времени позволяют исправить основной недостаток систем пакетной обработки – изоляцию пользователя от процесса выполнения его задач. Каждому пользователю предоставляется терминал, с которого он может управлять вычислительным процессом. Т.к. каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант выбран достаточно малым, то у всех пользователей, одновременно работающих на одной и той же ЭВМ, складывается впечатление, что каждый из них единолично использует машину.

    ОС разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, т.к. на выполнение принимается каждая запущенная пользователем задача, а не та, которая «выгодна» ОС, и, кроме того, имеются накладные расходы на более частое переключение процессора с задачи на задачу. Критерием эффективности систем разделения времени является не максимальная пропускная способность ЭВМ (скорость обработки информации), а удобство и эффективность работы отдельного пользователя.

    Наиболее совершенны и сложны многопользовательские многозадачные операционные системы, которые предусматривают одновременное выполнение многих заданий многих пользователей, обеспечивают разделение ресурсов компьютера в соответствии с приоритетами пользователей и защиту данных каждого пользователя от несанкционированного доступа. В этом случае операционная система работает в режиме разделения времени , т.е. обслуживает многих пользователей, работающих каждый со своего терминала.

    Суть режима разделения времени состоит в следующем. Каждой программе, находящейся в оперативной памяти и готовой к исполнению, выделяется для исполнения фиксированный, задаваемый в соответствии с приоритетом пользователя интервал времени (интервал мультиплексирования). Если программа не выполнена до конца за этот интервал, ее исполнение принудительно прерывается, и программа переводится в конец очереди. Из начала очереди извлекается следующая программа, которая исполняется в течение соответствующего интервала мультиплексирования, затем поступает в конец очереди и т.д. в соответствии с циклическим алгоритмом. Если интервал мультиплексирования достаточно мал (~200 мс), а средняя длина очереди готовых к исполнению программ невелика (~10), то очередной квант времени выделяется программе каждые 2 с. В этих условиях ни один из пользователей практически не ощущает задержек, т.к. они сравнимы со временем реакции человека.

    Приоритет (priority) – относительная важность или срочность.

    Приоритет – это обладание преимуществом, т.е. требование повышенного внимания, которое может быть определено количественной величиной, учитываемой при определении порядка удовлетворения нескольких требований на доступ к одному ресурсу.

    Назначать приоритеты – устанавливать порядок действий в соответствии со срочностью или важностью работы. В мультипрограммном режиме программам назначаются приоритеты так, что срочные работы не задерживаются вспомогательными задачами. Программные прерывания должны отрабатываться аналогично мультипрограммному режиму.

    Одной из разновидностей режима разделения времени является фоновый режим , когда программа с более низким приоритетом работает на фоне программы с более высоким приоритетом. Работа в фоновом режиме реального времени аналогична работе секретаря руководителя. Секретарь занимается текущими делами до тех пор, пока начальник не дал срочное поручение.

    Системы реального времени применяются для управления различными техническими объектами (конвейер, станок, робот, космический аппарат, научная экспериментальная установка, гальваническая линия, доменная печь, автомат для контроля качества выпускаемой продукции). Существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом. Система должна иметь гарантированное время реакции , т.е. задержка ответа не должна превышать определенного времени. В противном случае может произойти авария (спутник выйдет из зоны видимости; экспериментальные данные, поступающие с датчиков, будут потеряны; толщина гальванического покрытия не будет соответствовать норме; бракованные изделия попадут в приемник годной продукции).

    Т.о., критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия).

    ЭВМ управляет некоторым внешним процессом, обрабатывая данные и информацию, непосредственно поступающую от объекта управления. Поскольку определяющим фактором являются реально поступающие от объекта управления данные, такой режим называют режимом реального времени , а его организация возлагается на специализированную операционную систему.

    3. По количеству используемых процессоров:

    • однопроцессорные;
    • многопроцессорные.

    4. По разрядности процессора:

    • 8-разрядные;
    • 16-разрядные;
    • 32-разрядные;
    • 64-разрядные.

    Разрядность ОС – определяется количеством бит, используемых для адресации (в оперативной памяти, на дисках) , (разрядностью процессора вашего ПК).

    У ОС Windows — 32-бит и 64-бит, дистрибутивы делятся на x32 и x64 соответственно, x86 — обозначение 32-х битной версии.

    Посмотреть разрядность в системе:

    ярлык”Мой компьютер“ →ПКМ → Свойства → Тип системы

    5. По типу пользовательского интерфейса:

    • командные (текстовые);
    • объектно-ориентированные (графические) .

    6.По типу использования общих аппаратных и программных ресурсов:

    • сетевые;
    • локальные.

    Сетевые ОС предназначены для эффективного решения задач распределенной обработки данных. Такая обработка ведется не на отдельном компьютере, а на нескольких компьютерах, объединенных сетью. Сетевые ОС поддерживают распределенное выполнение процессов, их взаимодействие, обмен данными между ЭВМ, доступ пользователей к общим ресурсам и другие функции, которые превращают распределенную в пространстве систему в целостную многопользовательскую систему.

    Все сетевые ОС делятся на две группы: одноранговые ОС и ОС с выделенными серверами .

    В одноранговых сетях каждая ЭВМ может выполнять как функции сервера, так и рабочей станции. В сетях с выделенными серверами функции расписаны более жестко: рабочие станции не предоставляют свои ресурсы для других ЭВМ, это возможно только для серверов.

    Характеристики, определяющие выбор ОС:

    • распространенность;
    • наличие большого количества прикладных программных средств, работающих под ее управлением;
    • простота освоения и взаимодействия с ней пользователей;
    • легкость перехода с одной версии ОС на другую, более совершенную.

    Примеры ОС

    1. MS- DOS — предназначена для работы с 16- и 32-разрядными процессорами типа 80286, 80386, 80486 (Intel), 5×86 (AMD)- «дисковая ОС » (ДОС или DOS), термин сложился исторически и говорит только о том, что вся операционная система или ее основная часть расположены на внешнем носителе (винчестере, дискете или компакт-диске), откуда и должна происходить ее загрузка в оперативную память компьютера;
    2. Windows 95/98/XP, Windows Vista, Windows 7, W indows NT/2000, OS/2 Warp 4.0 — ориентированы на работу с 32- и 64-разрядными процессорами типа Pentium;
    3. UNIX — применяется для работы с 32- и 64-разрядными процессорами типа: Pentium (Intel), Alpha AXP (DEC), P6 и PowerPC (IBM и Motorola), R4300i (MIPS);
    4. System ( MacOS) — предназначена для компьютеров Macintosh фирмы Apple;
    5. Linux – клон Unix для работы на PC.
      Linux – свободно распространяемая версия ОС Unix для платформ х86, Motorola 68k, Digital Alpha, Sparc, Mips и Motorola PowerPC. В Linux не используется никаких частей программного обеспечения, принадлежащих каким-либо коммерческим организациям. По этой причине она получила достаточно широкое распространение.
      Первая версия ОС Linux была разработана в 1991 г. Т. Линусом (Финляндия), а затем в ее разработке участвовало большое количество людей из разных частей мира. Последние версии являются продуктами коллективного творчества большого числа программистов.

    Важнейшим достоинством большинства ОС является модульность. Это свойство позволяет объединить в каждом модуле определенные логически связанные группы функций. Если возникает необходимость в замене или расширении такой группы функций, это можно сделать путем замены или модификации лишь одного модуля, а не всей системы.

    Большинство ОС состоит из следующих основных модулей:

      базовая система ввода-вывода (BIOS – Basic Input Output System);

      загрузчик операционной системы;

    • драйверы устройств;

      командный процессор;

      внешние команды (файлы).

    Базовая система ввода-вывода (BIOS) – это набор микропрограмм, реализующих основные низкоуровневые (элементарные) операции ввода-вывода. Они хранятся в постоянном запоминающем устройстве (ПЗУ) компьютера и записываются туда при изготовлении материнской платы. Данная система, по сути, «встроена» в компьютер и является одновременно его аппаратной частью и частью операционной системы.

      Первая функция BIOS – автоматическое тестирование основных компонентов компьютера при его включении. При обнаружении ошибки на экран выводится соответствующее сообщение и / или выдается звуковой сигнал.

      Далее BIOS осуществляет вызов блока начальной загрузки операционной системы, находящейся на диске (эта операция выполняется сразу по окончании тестирования). Загрузив в оперативное запоминающее устройство (ОЗУ) этот блок, BIOS передает ему управление, а он в свою очередь загружает другие модули ОС.

      Еще одна важная функция BIOS – обслуживание прерываний. При возникновении определенных событий (нажатие клавиши на клавиатуре, щелчок мыши, ошибка в программе и т.д.) вызывается одна из стандартных подпрограмм BIOS по обработке возникшей ситуации.

    Загрузчик операционной системы – это короткая программа, находящаяся в первом секторе любого загрузочного диска (дискеты или диска с операционной системой). Функция этой программы заключается в считывании в память основных дисковых файлов ОС и передаче им дальнейшего управления ЭВМ.

    Ядро ОС реализует основные высокоуровневые услуги, загружается в ОЗУ и остается в ней постоянно. В ядре ОС выделяют несколько подсистем, каждая из которых отвечает за выполнение той или иной задачи:

      файловая система (отвечает за размещение информации на устройствах хранения);

      система управления памятью (размещает программы в памяти);

      система управления программами (осуществляет запуск и выполнение программ);

      система связи с драйверами устройств (отвечает за взаимодействие с внешними устройствами);

      система обработки ошибок;

      служба времени (предоставляет всем программам информацию о системном времени).

    Модуль расширения BIOS придает гибкость операционной системе, позволяя добавлять драйверы, обслуживающие дополнительные устройства.

    Драйверы – это программы, управляющие работой внешних (периферийных) устройств на физическом уровне. Они дополняют систему ввода-вывода ОС и обеспечивают обслуживание новых устройств или нестандартное использование имеющихся. Они передают или принимают данные от аппаратуры и делают пользовательские программы независимыми от ее особенностей.

    Драйверы загружаются в память компьютера при загрузке операционной системы; необходимость и порядок их загрузки указываются в специальных файлах конфигурации. Такая схема облегчает подключение к машине новых устройств и позволяет делать это, не затрагивая системные файлы ОС.

    Командный процессор – это программа, функции которой заключаются в следующем:

      прием и синтаксический разбор команд, полученных с клавиатуры или из командного файла;

      исполнение внутренних команд операционной системы;

      загрузка и исполнение внешних команд (реализованных в виде самостоятельных программ) операционной системы и прикладных программ пользователя (файлы с расширением СОМ, ЕХЕ или ВАТ).

      исполнение командных файлов (это текстовые файлы с набором команд и расширением ВАТ). Когда в качестве команды задается имя такого файла, командный процессор начинает последовательно читать и интерпретировать содержащиеся в нем строки, каждая из которых может содержать одну команду, метку или комментарий. Если в очередной строке стоит команда, осуществляющая вызов какой-то программы, выполнение командного файла приостанавливается и начинается работа вызванной программы. После ее завершения происходит выполнение следующей команды командного файла.

    Понятие операционной системы(ОС). Назначение, основные функции и разновидности ОС

    Операционная система (ОС) - комплекс системных и управляющих программ, предназначенных для наиболее эффективного использования всех ресурсов вычислительной системы (ВС) (Вычислительная система - взаимосвязанная совокупность аппаратных средств вычислительной техники и программного обеспечения, предназначенная для обработки информации) и удобства работы с ней.

    Назначение ОС

    Назначение ОС - организация вычислительного процесса в вычислительной системе, рациональное распределение вычислительных ресурсов между отдельными решаемыми задачами; предоставление пользователям многочисленных сервисных средств, облегчающих процесс программирования и отладки задач. Операционная система исполняет роль своеобразного интерфейса (Интерфейс - совокупность аппаратуры и программных средств, необходимых для подключения периферийных устройств к ПЭВМ) между пользователем и ВС, т.е. ОС предоставляет пользователю виртуальную ВС. Это означает, что ОС в значительной степени формирует у пользователя представление о возможностях ВС, удобстве работы с ней, ее пропускной способности. Различные ОС на одних и тех же технических средствах могут предоставить пользователю различные возможности для организации вычислительного процесса или автоматизированной обработки данных.

    В программном обеспечении ВС операционная система занимает основное положение, поскольку осуществляет планирование и контроль всего вычислительного процесса. Любая из компонент программного обеспечения обязательно работает под управлением ОС.

    Функцией ОС является распределение процессоров, памяти, устройств и данных между процессами, конкурирующими за эти ресурсы.

    Основные функции:

    Выполнение по запросу программ тех достаточно элементарных (низкоуровневых) действий, которые являются общими для большинства программ и часто встречаются почти во всех программах (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

    Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

    Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

    Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

    Обеспечение пользовательского интерфейса.

    Сетевые операции, поддержка стека сетевых протоколов.

    Дополнительные функции:

    Параллельное или псевдопараллельное выполнение задач (многозадачность).

    Эффективное распределение ресурсов вычислительной системы между процессами.

    Разграничение доступа различных процессов к ресурсам.

    Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

    Взаимодействие между процессами: обмен данными, взаимная синхронизация.

    Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

    Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация

    Разновидности операционных систем

    В соответствии с условиями применения различают три режима ОС: пакетной обработки, разделения времени и реального времени. В режиме пакетной обработки ОС последовательно выполняет собранные в пакет задания. В этом режиме пользователь не имеет контакта с ЭВМ, получая лишь результаты вычислений. В режиме разделения времени ОС одновременно выполняет несколько задач, допуская обращение каждого пользователя к ЭВМ. В режиме реального времени ОС обеспечивает управление объектами в соответствии с принимаемыми входными сигналами. Время отклика ЭВМ с ОС реального времени на возмущающее воздействие должно быть минимальным.

    Существует несколько видов операционных систем: DOS, Windows, UNIXразных версий и др. Наиболее распространенной является операционная системаWindows. Существует несколько версий Windows: Windows-3.1, Windows-95,Windows-98, Windows-2000, Windows NT. Все они близки между собой посодержанию, поэтому в дальнейшем рассмотрим операционные системы DOS иWindows-9х

    Операционная система DOS состоит из следующих частей:

    Базовая система ввода-вывода (ВIOS), находящаяся в постоянной памяти (постоянном запоминающем устройстве, ПЗУ) компьютера. Эта часть операционной системы является «встроенной» в компьютер. Ее назначение состоит в выполнении наиболее простых и универсальных услуг операционнойсистемы, связанных с осуществлением ввода-вывода. Базовая система ввода-вывода содержит также тест функционирования компьютера, проверяющий работу памяти и устройств компьютера при включении его электропитания. Кроме того, базовая система ввода-вывода содержит программу вызова загрузчика операционной системы.

    Внешние команды DOS - это программы, поставляемые вместе с операционнойсистемой в виде отдельных файлов. Эти программы выполняют действияобслуживающего характера, например форматирование дискет, проверку дисков и т.д. Драйверы устройств - это специальные программы, которые дополняютсистему ввода-вывода DOS и обеспечивают обслуживание новых илинестандартное использование имеющихся.

    Ключевой идеей Windows является обеспечение полной независимости программ от аппаратуры. Система Windows 3.1 изначально создавалась так, чтобы полностью взять на себя общение с конкретным типом дисплея или принтера. Как пользователю, так и программисту, создающему приложение под Windows предоставлены универсальные средства, снимающие проблему обеспечения совместимости с конкретной аппаратурой (аппаратная совместимость) и программным обеспечением (программная совместимость).

    Унифицированный единый графический интерфейс с пользователем облегчает изучение новых программных продуктов.

    Windows не только позволяет работать с привычным программным продуктом, но и предлагает дополнительные возможности (запуск нескольких программ одновременно, быстрое переключение с одной программы на другую, обмен данными между ними и т.п.). Обеспечена возможность работы со всеми прикладными программами MS-DOS (текстовыми процессорами, СУБД, электронными таблицами и пр.).

    Windows 3.1 может работать в одном из трех режимов: Real (реальном), Standart (стандартном), 386 Enhanced (расширенном). В процессе установки Windows анализирует имеющиеся аппаратные ресурсы и автоматически устанавливает режим, наиболее полно использующий возможности имеющейся аппаратуры.

    Windows 3.1 позволяет запускать одновременно несколько программ (в том числе одну и ту же программу несколько раз), с возможностью мгновенного переключения с одной программы на другую. Это позволяет инициировать длительный процесс (печать, сортировку и копирование больших объемов данных) и заняться другой работой, а не ждать, пока он закончится.

    Windows 95 представляет собой продукт эволюционного развития системы Windows 3.1x и не означает полного разрыва с прошлым. Хотя она несет в себе много важных изменений по сравнению с 16-разрядной архитектурой Windows, в ней сохранены некоторые важнейшие свойства ее предшественницы. Результатом стало появление гибридной ОС, способной работать с 16-разрядными прикладными программами Windows, программами, унаследованными от DOS, и старыми драйверами устройств реального режима и в то же время совместимой с истинными 32-разрядными прикладными программами и 32-разрядными драйверами виртуальных устройств.

    Среди наиболее важных усовершенствований, появившихся в Windows 95, изначально заложенная в ней способность работать с 32-разрядными многопотоковыми прикладными программами, защищенные адресные пространства, вытесняющая многозадачность, намного более широкое и эффективное использование драйверов виртуальных устройств и возросшее применение 32-разрядных хипов для хранения структур данных системных ресурсов. Ее наиболее существенный недостаток состоит в относительно слабой защищенности от плохо работающих программ, содержащих ошибки.

    Windows NT по существу представляет собой операционную систему сервера, приспособленную для использования на рабочей станции. Этим обусловлена архитектура, в которой абсолютная защита прикладных программ и данных берет верх над соображениями скорости и совместимости. Чрезвычайная надежность Windows NT обеспечивается ценой высоких системных затрат, поэтому для получения приемлемой производительности необходимы быстродействующий процессор и по меньшей мере 16 Mb ОЗУ. Как и в OS/2 Warp, в системе Windows NT безопасность нижней памяти достигается за счет отказа от совместимости с драйверами устройств реального режима. В среде Windows NT работают собственные 32-разрядные NT-прикладные программы, а также большинство прикладных программ Windows 95. Так же, как OS/2 Warp и Windows 95, система Windows NT позволяет выполнять в своей среде 16-разрядные Windows- и DOS-программы.

    В апреле 1987 г. компании IBM и Microsoft объявили о совместных планах по созданию новой операционной системы: OS/2. Прошло несколько лет, и мир стал свидетелем "бракоразводного процесса", в результате чего у OS/2 остался один родитель - компания IBM, а фирма Microsoft отдала все симпатии любимому детищу, имя которому Windows. Важно помнить, что OS/2 - это новая операционная система с графическим интерфейсам пользователя (ГИП), в то время как Windows представляет собой ГИП, работающий "поверх" DOS.

    OS/2 является полностью защищенной операционной системой, благодаря чему невозможны конфликты между программами в памяти. Многозадачная система OS/2 способна выполнять одновременно несколько прикладных программ: например, Вы можете начать пересчет электронной таблицы, запустить печать документа в текстовом редакторе, связной пакет для приема/передачи сообщений электронной почты, а затем продолжить поиск записей в базе данных.

    Система OS/2 поддерживает многопроцессные прикладные программы, рассчитанные на одновременное выполнение нескольких внутренних функций. Примерами могут служить текстовый редактор, в котором печать документа и проверка правописания осуществляются параллельно; электронная таблица с возможностью одновременного выполнения функций пересчета и просмотра или база данных, в которой можно совмещать функции обновления и поиска записей.

    программа интерфейс операционный вычислительный

    Доброго времени суток уважаемый пользователь. На этой страничке мы поговорим на такие темы, как: Назначение и основные функции операционных систем. Состав операционной системы.

    Операционная система (ОС) – это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения всех других программ. ОС относятся к составу системного программного обеспечения и являются основной его частью. Операционные системы: MS DOS 7.0, Windows Vista Business, Windows 2008 Server, OS/2, UNIX, Linux.

    Основные функции ОС:

    • управление устройствами компьютера (ресурсами), т.е. согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др.
    • управление процессами, т.е. выполнение программ и их взаимодействие с устройствами компьютера.
    • управление доступом к данным на энергонезависимых носителях (таких как жесткий диск, компакт-диск и т.д.), как правило, с помощью файловой системы.
    • ведение файловой структуры.
    • пользовательский интерфейс, т.е. диалог с пользователем.

    Дополнительные функции:

    • параллельное или псевдопараллельное выполнение задач (многозадачность).
    • взаимодействие между процессами: обмен данными, взаимная синхронизация.
    • защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.
    • разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).

    Состав операционной системы

    В общем случае в состав ОС входят следующие модули:

    • Программный модуль, управляющий файловой системой.
    • Командный процессор, выполняющий команды пользователя.
    • Драйверы устройств.
    • Программные модули, обеспечивающие графический пользовательский интерфейс.
    • Сервисные программы.
    • Справочная система.

    Драйвер устройства (device driver) – специальная программа, обеспечивающая управление работой устройств и согласование информационного обмена с другими устройствами.

    Командный процессор (command processor) – специальная программа, которая запрашивает у пользователя команды и выполняет их (интерпретатор программ).

    Интерпретатор команд отвечает за загрузку приложений и управление информационным потоком между приложениями.

    Для упрощения работы пользователя в состав современных ОС входят программные модули, обеспечивающие графический пользовательский интерфейс.
    Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В ОС имеется программный модуль, управляющий файловой системой.

    Сервисные программы позволяют обслуживать диски (проверять, сжимать, дефрагментировать и др.), выполнять операции с файлами (копирование, переименование и др.), работать в компьютерных сетях.

    Для удобства пользователя в состав ОС входит справочная система , позволяющая оперативно получить необходимую информацию о функционировании как ОС в целом, так и о работе ее отдельных модулей.

    Примечание

    Состав модулей ОС, а также их количество зависит от семейства и вида ОС. Так, например, в ОС MS DOS отсутствует модуль, обеспечивающий графический пользовательский интерфейс.

    Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

    1. Ядро – это модули, выполняющие основные функции ОС.
    2. Вспомогательные модули , выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированном режиме .

    Модули ядра выполняют следующие базовые функции ОС: Управление процессами, Управление системой прерываний, Управление памятью, управление устройствами ввода-вывода, Функции, решающие внутрисистемные задачи организации вычислительного процесса: переключение контекстов, загрузка/вы­грузка страниц, обработка прерываний. Эти функции недоступны для приложе­ний. Функции, служащие для поддержки приложений, создавая для них так называемую прикладную программную среду.

    Приложения могут обращаться к ядру с запросами – системными вызовами – для выполнения тех или иных действий: для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т.д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API (Application programming interface) .

    Пример.
    Базовый код API Win32 содержится в трех библиотеках динамической загрузки (Dynamic Link Library, DLL): USER32, GDI32 и KERNEL32.

    Kernel — модуль Windows, который поддерживает низкоуровневые функции по работе с файлами и управлению памятью и процессами. Этот модуль обеспечивает сервис для 16- и 32-разрядных приложений.
    GDI (Graphics Device Interface) — модуль Windows, обеспечивающий реализацию графических функций по работе с цветом, шрифтами и графическими примитивами для дисплея и принтеров.
    User — модуль Windows, который является диспетчером окон и занимается созданием и управлением отображаемыми на экране окнами, диалоговыми окнами, кнопками и другими элементами пользовательского интерфейса.
    Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы, без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций. Поэтому разработчики операционной системы уделяют особое внимание надежности кодов ядра, в результате процесс их отладки может растягиваться на многие месяцы.

    Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений.
    Вспомогательные модули ОС выполняют вспомогательные функции ОС (полезные, но менее обязательные чем функции ядра).

    Примеры вспомогательных модулей:

    • Программа архивирования данных.
    • Программа дефрагментации диска.
    • Текстовый редактор.

    Вспомогательные модули ОС оформляются либо в виде приложений, либо в виде библиотек процедур. Вспомогательные модули ОС подразделяются на следующие группы:

    утилиты – программы, решающие задачи управления и сопровождения компьютерной системы: обслуживание дисков и файлов.

    системные обрабатывающие программы – текстовые или графические редакторы, компиляторы, компоновщики, отладчики.

    программы предоставления пользователю дополнительных услуг пользовательского интерфейса (калькулятор, игры).

    библиотеки процедур различного назначения, упрощающие разработку при­ложений (библиотека математических функций, функций ввода-вывода).

    Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов.
    Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются резидентными.

    Вспомогательные модули обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Такая организация ОС экономит оперативную память компьютера.

    Примечание

    Разделение операционной системы на ядро и вспомогательные модули обеспечивает легкую расширяемость ОС. Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать основные функции, образующие ядро системы.

    Объектами ядра ОС являются:

    • Процессы (рассмотрено в теме 2.3).
    • Файлы.
    • События.
    • Потоки (рассмотрено в теме 2.3).
    • Семафоры – объекты, позволяющие войти в заданный участок кода не более чем n потокам.
    • Мьютексы – одноместные семафоры, служащие в программировании для синхронизации одновременно выполняющихся потоков.
    • Файлы, проецируемые в память.

    Операционная система (ОС) представляет собой программный комплекс, обеспечивающий взаимодействие между пользователем и аппаратной частью компьютера. Например, Windows, Linux и Mac OSX. Если чуть проще, то система это набор программных кодов, который позволяет вам запускать программы на вашем компьютере, отображать графику на мониторе, воспринимать и интерпретировать сигналы от мышки и клавиатуры, передавать на печать документы, заходить в интернет и прочее. Тем не менее, это не просто набор разрозненных утилит, а нечто большее, но обо всем по порядку

    Примечание : Статья предназначена для начинающих и обычных пользователей.

    Примечание : Наиболее популярными операционными системами являются Windows, различные сборки Linux и Mac OSX.

    Назначение и типы операционной системы

    В основном, операционная система имеет следующее назначение:

    1. Осуществление управления аппаратными устройствами компьютера, включая передачу и прием информации из периферийных устройств. Другими словами, координирует функционирование всей аппаратуры, осуществляет контроль за выполнением и прочее

    2. Обеспечение интерфейсов или же возможностей для передачи инструкций от программ на аппаратные устройства. Например, чтобы игрушки могли использовать видеокарту

    3. Является прослойкой между пользователем и компьютером

    4. Не обязательное условие, но сегодня есть практически в любых операционных системах. Предоставление дополнительных возможностей для пользователей. Например, организация разграничения доступа (безопасность)

    Операционные системы принято делить на 4 типа:

    1. Однопользовательская однозадачная. Как и следует из названия, система предназначена для одного пользователя и для выполнения одной задачи

    2. Однопользовательская однозадачные с дополнительной фоновой задачей. Позволяют запускать в фоне еще одну дополнительную задачу. Как правило, фоновой задачей является печать

    3. Однопользовательская многозадачная. Поддерживает только одного пользователя, но позволяет запускать сразу несколько задач

    4. Многопользовательская многозадачная. Тут все просто. Много пользователей, которые запускают много задач.

    Обратите внимание, что многопользовательских однозадачных систем в принципе не может быть, так как каждый пользователь на компьютере подразумевает собой отдельную задачу в операционной системе.

    Кроме того, операционные системы бывают 32-х и 64-х битные .

    Из чего состоит операционная система

    Как уже говорилось, операционная система - это программный комплекс, который позволяет использовать устройства вашего компьютера. Поэтому он разделяется на несколько разных уровней.

    Если кратко, то операционная система обычно состоит из следующего:

    2. Драйвера

    3. Сервисы или пакеты инструментов

    4. Оболочка

    5. Командный модуль

    Примечание : Стоит знать, что операционные системы для микроконтроллеров могут содержать не все из вышеперечисленного (просто нет необходимости).

    А теперь, рассмотрим по порядку:

    Ядро - это самая важная часть операционной системы. Оно содержит все необходимые механизмы для координации и управления всеми остальными компонентами.

    Драйвера - это программные коды (не обязательно программа или библиотека), которые позволяют ядру операционной системы корректно взаимодействовать с аппаратными устройствами. Стоит знать, что есть стандартные драйвера, которые обеспечивают минимальный набор возможностей, и драйвера от производителей, которые позволяют по максимуму использовать устройства.

    Сервисы или пакеты инструментов - это отдельные программы, которые позволяют операционной системе предоставлять дополнительные возможности.

    Оболочка - это тот интерфейс, который видит пользователь. Именно благодаря ему пользователь может запускать программы и выполнять прочие действия.

    Командный модуль - это пользовательская программа, которая запускается в операционной системе.

    Что происходит внутри операционной системы

    Все взаимодействие внутри операционной системы построено на так называемых системных вызовах, которые представляют собой прослойку между запросами программ пользователей и устройствами компьютера. Как это происходит. Пользователь запускает программу, та в свою очередь посылает системный вызов сервсисам операционной системы. Например, "открой файл для чтения". Сервисы осуществляют обращение к ядру системы, которое далее обращается через драйвера к устройствам компьютера. В случае с примером, к драйверу жесткого диска, который в последствии посылает команды устройству.

    Аппаратные устройства компьютера имеют схожий принцип, только у них все построено на прерываниях, которые представляют собой специальные сигналы, указывающие на определенные действия. Например, окончание выполнения задачи, подготовка перед передачей данных и прочее.

    Такой подход позволяет операционной системе обеспечивать жизнестойкость при возникновении ошибок. Тем не менее, если же ошибки возникают на уровне ядра, то система обычно аварийно завершает выполнение. Например, в Windows это синий экран смерти .

    Как операционная система загружается

    Операционная система загружается в несколько этапов:

    1. Вначале встроенная система компьютера (