• Топология сетей. Топология компьютерных сетей

    Топологии локальных вычислительных сетей

    Глава 1. Базовые понятия сетевых технологий.

    При создании компьютерной сети передачи данных, когда соединяются все компьютеры сети и другие сетевые устройства, формируется топология компьютерной сети .

    Сетевая топология (от греч. τоπος, - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

    Физическая топология сети передачи данных

    Исторически сложились определённые типы физических топологий сети. Рассмотрим некоторые, наиболее часто встречающиеся топологии.

    «Общая шина»

    Общая шина являлась до недавнего времени самой распространенной топологией для локальных сетей. В этом случае компьютеры подключаются к одному коаксиальному кабелю по схеме «монтажного ИЛИ». Передаваемая информация, в этом случае, распространяется в обе стороны.

    Применение топологии «общая шина» снижает стоимость кабельной прокладки, унифицирует подключение различных модулей, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станциям сети. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть.

    Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

    Рисунок 5. Схема подключения компьютеров по схеме «общая шина».

    Топология «звезда»

    В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому коммутатором (концентратором, хабом) который находится в центре сети. В функции коммутатора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - значительно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность коммутатора может вывести из строя всю сеть. Кроме того, коммутатор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.

    Сетевой концентратор илиХаб (жарг. от англ. hub - центр деятельности)- сетевое устройство, предназначенное для объединения нескольких устройствEthernetв общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Термин концентратор (хаб)применим также к другим технологиям передачи данных:USB, FireWire и пр.

    В настоящее время сетевые хабы не выпускаются- им на смену пришли сетевые коммутаторы (switch), выделяющие каждое подключённое устройство в отдельный сегмент.

    Рисунок 6. Схема подключения компьютеров по схеме «звезда»

    Топология «кольцо»

    В информационно вычислительных сетях с кольцевой конфигурацией данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознает данные как «свои», то он копирует их себе во внутренний буфер. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи - данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения.

    В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями.

    Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

    Данная физическая топология с успехом реализуется в сетях, созданных с использованием технологии FDDI.

    FDDI(англ. Fiber Distributed Data Interface - распределённый волоконный интерфейс данных) - стандарт передачи данных в локальной сети, протяжённостью до 200 километров. Стандарт основан на протоколеToken Bus . В качестве среды передачи данных вFDDIрекомендуется использовать волоконно-оптический кабель, однако можно использовать и медный кабель, в таком случае используется сокращениеCDDI(Copper Distributed Data Interface). В качестве топологии используется схемадвойного кольца , при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе - вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологииToken Ring.

    Рисунок 7. Схема подключения компьютеров по схеме «кольцо»

    Полносвязная топология

    Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко, так как не удовлетворяют ни одному из приведенных выше требований. Чаще этот вид топологии используется в многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров.

    Рисунок 8.Схема подключения компьютеров по схеме «полносвязная топология»

    Ячеистая топология

    Ячеистая топология (англ. mesh-ячейка сети ) получается из полносвязной путем удаления некоторых возможных связей. В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей.

    Рисунок 9. Схема подключения компьютеров по схеме «ячеистая топология»

    В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерен симбиоз различных топологий. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

    Топология «дерево»

    Такая топология является смешанной, здесь взаимодействуют системы с различными топологиями. Такой способ смешанной топологии чаще всего применяется при построении ЛВСс небольшим количеством сетевых устройств, а также при создании корпоративныхЛВС. Данная топология совмещает в себе относительно низкую себестоимость и достаточно высокое быстродействие, особенно при использовании различных сред передачи данных - сочетании медных кабельных систем,ВОЛС, а также применяя управляемые коммутаторы.

    Рисунок 10. Схема подключения компьютеров по схеме «дерево»

    В топологиях типа «общая шина» и «кольцо» линии связи, соединяющие элементы сети (компьютеры, сетевые устройства и пр.), являются распределёнными (англ. shared) . При совместном использовании ресурс линии делится между сетевыми устройствами, т.е. они являются линиями связи общего использования.

    Помимо распределённых , существуютиндивидуальные линии связи , когда каждый элемент сети имеет свою собственную (не всегда единственную) линию связи. Пример - сеть, построенная по топологии «звезда», когда в центре располагается устройство типа коммутатор, а каждый компьютер подключён отдельной линией связи.

    Общая стоимость сети построенной с применением распределённых линий связи будет гораздо ниже, однако и производительность такой сети будет ниже, потому что сеть с распределённой средой при большом количестве узлов будет работать всегда медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при ее совместном использовании - делится на все компьютеры сети.

    В современных сетях, в том числе глобальных, индивидуальными являются только линии связи между конечными узлами и коммутаторами сети, а связи между коммутаторами (маршрутизаторами) остаются распределёнными, так как по ним передаются сообщения разных конечных узлов.

    Рисунок 11. Индивидуальные и распределённые линии связи в сетях на основе коммутаторов

    Логическая топология сети передачи данных

    Помимо физической топологии сети передачи данных, предполагается и логическая топология сети . Логическая топология определяет маршруты передачи данных в сети. Существуют такие конфигурации, в которых логическая топология отличается от физической. Например, сеть с физической топологией «звезда» может иметь логическую топологию «шина» – все зависит от того, каким образом устроен сетевой коммутатор или интернет-шлюз, маршрутизатор (VLAN, наличиеVPN, и т.п.).

    Чтобы определить логическую топологию сети, необходимо понять, как в ней принимаются сигналы:

      в логических шинных топологиях каждый сигнал принимается всеми устройствами;

      в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему.

    Кроме того, важно знать, каким образом сетевые устройства получают доступ к среде передачи информации.

    Термин «топология» характеризует физическое расположение компьютеров, кабелей и других компонентов сети.

    Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети.

    Кроме термина «топология», для описания физической компоновки употребляют также следующее:

      Физическое расположение;

      Компоновка;

      Диаграмма;

    Топология сети обуславливает ее характеристики. В частности выбор той или иной топологии влияет на:

      состав необходимого сетевого оборудования;

      характеристики сетевого оборудования;

      возможности расширения сети;

      способ управления сетью.

    Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве случаев используется кабель (реже – беспроводные сети – инфракрасное оборудование). Однако, просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаиморасположения компьютеров.

    Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

    Базовые топологии

    • звезда (star)

      кольцо (ring)

    Если компьютеры подключены вдоль одного кабеля, топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.

    Шина.

    Топологию «шина» часто называют «линейной шиной» (linerbus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

    В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

    Данные в виде электрических сигналов передаются всем компьютерам в сети; однако информацию принимает тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени, только один компьютер может вести передачу.

    Так, как данные в сеть передаются только одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, тем медленнее работает сеть. Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данных, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В этой топологии данные распространяются по всей сети – от одного конца кабеля к другому. Если не предпринимать никаких действий, то сигналы, достигнув конца кабеля будут отражаться и это не позволит другим компьютерам осуществлять передачу. Поэтому, после того, как данные достигнут адресата, электрические сигналы необходимо погасить. Для этого на каждом конце кабеля в сети с топологией «шина» устанавливают терминаторы (terminators) (которые еще называют заглушками) для поглощения электрических сигналов.

    Преимущества: отсутствие дополнительного активного оборудования (например повторителей) делает такие сети простыми и недорогими.

    Схема линейной топологии локальной сети

    Однако, недостаток линейной топологии заключается в ограничениях по размеру сети, ее функциональности и расширяемости.

    Кольцо

    При кольцеобразной топологии каждая рабочая станция соединяется с двумя ближайшими соседями. Такая взаимосвязь образует локальную сеть в виде петли или кольца. Данные передаются по кругу в одном направлении, а каждая станция играет роль повторителя, который принимает и отвечает на адресованные ему пакеты и передает другие пакеты следующей рабочей станции «вниз». В оригинальной кольцеобразной сети все объекты подключались друг к другу. Такое подключение должно было быть замкнутым. В отличии от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитора, усиливая сигналы и передавая их следующему компьютеру. Преимущество такой топологии было предсказуемое время реагирования сети. Чем больше устройств находилось в кольце, тем дольше сеть реагировала на запросы. Наиболее существенный ее недостаток заключается в том, что при выходе из строя хотя бы одного устройства отказывалась функционировать вся сеть.

    Один из принципов передачи данных по кольцу носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

    Такую топологию можно улучшить, подключив все сетевые устройства через концентратор (Hub устройство, соединяющие другие устройства). Визуально «подправленное кольцо физически кольцом уже не является, но в подобной сети данные все равно передаются по кругу.

    На рисунке сплошными линиями обозначены физические соединения, а пунктирными – направления передачи данных. Таким образом, подобная сеть имеет логическую кольцевидную топологию, тогда как физически представляет собой звезду.

    Звезда

    При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, имеющему концентратор. Сигналы от передающего компьютера поступают через концентратор ко всем остальным. В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же если центральный компонент выйдет из строя, нарушится работа всей сети.

    Преимущество: если нарушится работа в одном компьютере или выйдет из строя кабель, соединяющий один компьютер, то только этот компьютер не сможет получать и передавать сигналы. На остальные компьютеры в сети это не повлияет. Общая скорость работы сети ограничивается только пропускной способностью концентратора.

    Звездообразная топология является доминирующей в современных локальных сетях. Такие сети довольно гибкие, легко расширяемые и относительно недорогие по сравнению с более сложными сетями, в которых строго фиксируются методы доступа устройств к сети. Таким образом, «звезды» вытеснили устаревшие и редко используемые линейные и кольцеобразные топологии. Более того, они стали переходным звеном к последнему виду топологии – коммутируемой звезд е.

    Коммутатор – это многопортовое активное сетевое устройство. Коммутатор «запоминает» аппаратные (или MAC–MediaAccessControl) адреса подключенных к нему устройств и создает временные пути от отправителя к получателю, по которым и передаются данные. В обычной локальной сети с коммутироуемой топологией предусмотрено несколько соединений с коммутатором. Каждый порт и устройство, которое к нему подключено, имеет свою собственную пропускную способность (скорость передачи данных).

    Коммутаторы могут значительно улучшить производительность сетей. Во-первых, они увеличивают общую пропускную способность, которая доступна для данной сети. Например в 8-ми потровом коммутаторе может быть 8 отдельных соединений, поддерживающих скорость до 10 Мбит/с каждое. Соответственно пропускная способность такого устройства – 80Мбит/с. Прежде всего коммутаторы увеличивают производительность сети, уменьшая количество устройств, которые могут заполнить всю пропускную способность одного сегмента. В одном таком сегменте содержится только два устройства: сетевое устройство рабочей станции и порт коммутатора. Таким образом за полосу пропускания в 10 Мбит/с могут «соперничать» всего два устройства, а не восемь (при сипользовании обыкновенного 8-портового концентратора, который не предусматривает такого разделения полосы пропускания на сегменты).

    В заключении следует сказать что различают топологию физических связей (физическая структура сети) и топологию логических связей (логическую структуру сети)

    Конфигурация физических связей определяется электрическими соединениями компьютеров и может быть представлена в виде графа, узлами которого являются компьютеры и коммуникационное оборудование, а ребра соответствуют отрезкам кабеля, связывающим пары узлов.

    Логические связи представляют собой пути прохождения информационных потоков по сети, они образуются путем соответствующей настройки коммуникационного оборудования.

    В некоторых случаях физическая и логическая топологии совпадают, а иногда не совпадают.

    Сеть показанная на рисунке являет собой пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии общая шина. Доступ же к шине происходит не по алгоритму случайного доступа, а путем передачи токена (маркер) в кольцевом порядке: от компьютера А – компьютеру В, от компьютера В – компьютеру С и т.д. Здесь порядок передачи токена уже не повторяет физические связи, а определяется логическим конфигурированием сетевых адаптеров. Ничто не мешает настроить сетевые адаптеры и их драйверы так, чтобы компьютеры образовали кольцо в другом порядке, например В, А, С… При этом физическая структура не меняется.

    Беспроводные сети.

    Словосочетание «беспроводная среда» может ввести в заблуждение, поскольку означает полное отсутствие проводов в сети. В действительности же обычно беспроводные компоненты взаимодействуют с сетью, в которой – как среда передачи – используется кабель. Такая сеть со смешанными компонентами называется гибридной.

    В зависимости от технологии беспроводные сети можно разделить на три типа:

      локальные вычислительные сети;

      расширенные локальные вычислительные сети;

      мобильные сети (переносные компьютеры).

    Способы передачи:

      инфракрасное излучение;

    • радиопередача в узком спектре (одночастотнная передача);

      радиопередача в рассеянном спектре.

    Кроме этих способов передачи и получения данных можно использовать мобильные сети, пакетное радио соединение, сотовые сети и микроволновые системы передачи данных.

    В настоящее время офисная сеть – это не просто соединение компьютеров между собой. Современный офис сложно представить без баз данных в которых хранится как финансовая отчётность предприятия, так и информация по кадрам. В крупных сетях, как правило, в целях безопасности баз данных, и для увеличения скорости доступа к ним используются отдельные сервера для хранения баз данных. Также сейчас современный офис сложно представить без доступа в сеть Интернет. Вариант схемы беспроводной сети офиса изображён на рисунке

    Итак сделаем вывод: будущую сеть необходимо тщательно спланировать. Для этого следует ответить на следующие вопросы:

      Для чего вам нужна сеть?

      Сколько пользователей будет в вашей сети?

      Как быстро сеть будет расширяться?

      Нужен ли для данной сети выход в Интернет?

      Необходимо ли централизованное управление пользователями сети?

    После этого нарисуйте на бумаге приблизительную схему сети. Следует не забывать о стоимости сети.

    Как мы с вами определили, топология является важнейшим фактором улучшения общей производительности сети. Базовые топологии могут применяться в любой комбинации. Важно понимать, что сильные и слабые стороны каждой топологии влияют на желаемую производительность сети и зависят от существующих технологий. Необходимо добиться равновесия между реальным расположением сети (например, в нескольких зданиях), возможностями использования кабеля, путями его прокладки и даже его типом.

    При организации компьютерной сети исключительно важным является выбор топологии, т. е. компоновки сетевых устройств и кабельной инфраструктуры. Нужно выбрать такую топологию, которая обеспечила бы надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи.

    Все соединения с сети осуществляются посредством специальных сетевых кабелей. Основными характеристиками сетевого кабеля являются скорость передачи данных и максимально допустимая длина. Обе характеристики определяются физическими свойствами кабеля.

    В качестве сетевого кабеля могут применяться и телефонные линии.

    Основные типы сетевого кабеля:

      Витая пара - позволяет передавать информацию со скоростью 10 Мбит/с (либо 100 Мбит/с), легко наращивается. Длина кабеля не может превышать 1000 м при скорости передачи 10 Мбит/с. Иногда используют экранированную витую пару, т. е. витую пару, помещенную в экранирующую оболочку.

      Толстый Ethernet - коаксиальный кабель с волновым сопротивлением 50 Ом. Обладает высокой помехозащищенностью. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000м.

      Тонкий Ethernet - это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. Соединения с сетевыми платами производятся при помощи специальных (байонетных) разъемов и тройниковых соединений. Расстояние между двумя рабочими станциями без повторителей может составлять максимум 185м, а общее расстояние по сети - 1000м.

      Оптоволоконные линии - наиболее дорогой тип кабеля. Скорость передачи по ним информации достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует.

    Существует три базовые топологии , на основе которых строится большинство сетей.

    1.«Шина» (Bus). В этой топологии все компьютеры соединяются друг с другом одним кабелем (Рис. 5.8). Посланные в такую сеть данные передаются всем компьютерам, но обрабатывает их только тот компьютер, аппаратный МАС-адрес сетевого адаптера которого записан в кадре как адрес получателя.

    Рис 5.8. Сеть с топологией «шина»

    Эта топология исключительно проста в реализации и дешева (требует меньше всего кабеля), однако имеет ряд существенных недостатков.

    Недостатки сетей типа «шина»

      Такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов - отдельных отрезков кабеля, их соединяющих).

      Поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров . Если передачу одновременно начинают два или больше компьютеров, возникает искажение сигнала {столкновение, иликоллизия ), приводящее к повреждению всех кадров. Тогда компьютеры вынуждены приостанавливать передачу, а затем по очереди ретранслировать данные. Влияние столкновений тем заметнее, чем выше объем передаваемой по сети информации и чем больше компьютеров подключено к шине. Оба этих фактора, естественно, снижают как максимально возможную, так и общую производительность сети, замедляя ее работу.

      «Шина» является пассивной топологией - компьютеры только «слушают» кабель и не могут восстанавливать затухающие при передаче по сети сигналы. Чтобы удлинить сеть, нужно использовать повторители (репитеры), усиливающие сигнал перед его передачей в следующий сегмент.

      Надежность сети с топологией «шина» невысока . Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети. Чтобы предотвратить такое отражение сигналов, на концах кабеля устанавливаются специальныерезисторы (терминаторы), поглощающие сигналы. Если же в любом месте кабеля возникает обрыв - например, при нарушении целостности кабеля или просто при отсоединении коннектора, - то возникают два незатерминированных сегмента, на концах которых сигналы начинают отражаться, и вся сеть перестает работать.

    Проблемы, характерные для топологии «шина», привели к тому, что эти сети, столь популярные еще десять лет назад, сейчас уже практически не используются.

    2. «Кольцо» (Ring ). В данной топологии каждый из компьютеров соединяется с двумя другими так, чтобы от одного он получал информацию, а второму - передавал ее (Рис. 5.9). Последний компьютер подключается к первому, и кольцозамыкается .

    Рис. 5.9. Сеть с топологией «кольцо»

    Преимущества сетей с топологией «кольцо»:

      поскольку у кабелей в этой сети нет свободных концов, терминаторы здесь не нужны;

      каждый из компьютеров выступает в роли повторителя, усиливая сигнал, что позволяет строить сети большой протяженности;

      из-за отсутствия столкновений топология обладает высокой устойчивостью к перегрузкам, обеспечивая эффективную работу с большими потоками передаваемой по сети информации

    Недостатки:

      сигнал в «кольце» должен пройти последовательно (и только в одном направлении) через все компьютеры, каждый из которых проверяет, не ему ли адресована информация, поэтому время передачи может быть достаточно большим;

      подключение к сети нового компьютера часто требует ее остановки, что нарушает работу всех других компьютеров;

      выход из строя хотя бы одного из компьютеров или устройств нарушает работу всей сети;

      обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной;

      чтобы избежать остановки работы сети при отказе компьютеров или обрыве кабеля, обычно прокладывают два кольца, что существенно удорожает сеть.

    Здесь, так же как и для сетей с топологией «шина», недостатки несколько перевешивают достоинства, в результате чего популярные ранее кольцевые сети теперь используются гораздо реже.

    3. Активная топология «звезда» (Active Star). Эта топология возникла на заре вычислительной техники, когда к мощному центральному компьютеру подключались все остальные абоненты сети. В такой конфигурации все потоки данных шли исключительно через центральный компьютер; он же полностью отвечал за управление информационным обменом между всеми участниками сети. Конфликты при такой организации взаимодействия в сети были невозможны, однако нагрузка на центральный компьютер была столь велика, что ничем другим, кроме обслуживания сети, этот компьютер, как правило, не занимался. Выход его из строя приводил к отказу всей сети, тогда как отказ периферийного компьютера или обрыв связи с ним на работе остальной сети не сказывался. Сейчас такие сети встречаются довольно редко.

    Гораздо более распространенной сегодня топологией является похожий вариант - «звезда-шина» (Star Bus), или «пассивная звезда» (Рис. 5.10). Здесь периферийные компьютеры подключаются не к центральному компьютеру, а к пассивному концентратору, или хабу (hub). Последний, в отличие от центрального компьютера, никак не отвечает за управ¬ление обменом данными, а выполняет те же функции, что и повторитель, то есть восстанавливает приходящие сигналы и пересылает их всем остальным подключенным к нему компьютерам и устройствам. Именно поэтому данная топология, хотя физически и выглядит как «звезда», логически является топологией «шина» (что и отражено в ее названии).

    Рис. 5.10. Сеть с топологией «звезда-шина»

    Несмотря на больший расход кабеля, характерный для сетей типа «звезда», эта топология имеет существенные преимущества перед остальными, что и обусловило ее широчайшее применение в современных сетях.

    Преимущества сетей типа «звезда-шина»:

      Надежность - подключение к центральному концентратору и отключение компьютеров от него никак не отражается на работе остальной сети; обрывы кабеля влияют только на единичные компьютеры;

      Легкость при обслуживании и устранении проблем - все компьютеры и сетевые устройства подключаются к центральному соединительному устройству, что существенно упрощает обслуживание и ремонт сети.

      Защищенность - концентрация точек подключения в одном месте позволяет легко ограничить доступ к жизненно важным объектам сети.

    Отметим, что при использовании вместо концентраторов более «интеллектуальных» сетевых устройств (мостов, коммутаторов и маршрутизаторов - подробнее о них будет рассказано позже) получается «промежуточный» тип топологии между активной и пассивной звездой. В этом случае устройство связи не только ретранслирует поступающие сигналы, но и производит управление их обменом.

    Другие возможные сетевые топологии

    Реальные компьютерные сети постоянно расширяются и модернизируются. Поэтому почти всегда такая сеть является гибридной, т. е. ее топология представляет собой комбинацию нескольких базовых топологий. Легко представить себе гибридные топологии, являющиеся комбинацией «звезды» и «шины», либо «кольца» и «звезды».

    Однако особо следует выделить топологию «дерево» (tree), которую можно рассматривать как объединение нескольких «звезд» (рис. 5.4). Именно эта топология сегодня является наиболее популярной при построении локальных сетей.

    Рис. 5.11. Сеть с топологией «дерево»

    Топология локальных сетей

    Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи . Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям , в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

    Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом , надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий , их достоинствах и недостатках надо.

    Существует три базовые топологии сети:

    · Шина (bus) - все компьютеры параллельно подключаются к одной линии связи . Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

    Рис. 1.5. Сетевая топология шина

    · Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

    Рис. 1.6. Сетевая топология звезда

    · Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7).

    Рис. 1.7. Сетевая топология кольцо

    На практике нередко используют и другие топологии локальных сетей , однако большинство сетей ориентировано именно на три базовые топологии .

    Прежде чем перейти к анализу особенностей базовых сетевых топологий , необходимо выделить некоторые важнейшие факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология .

    · Исправность компьютеров (абонентов ), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

    · Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы , разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом .

    · Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле .

    · Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины L пр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).

    Рис. 1.8. Затухание сигнала при распространении по сети

    Топология шина

    Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта , коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex ) обмена (в обоих направлениях, но по очереди, а не одновременно).

    В топологии шина отсутствует явно выраженный центральный абонент , через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями .

    Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента . В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях . Тем не менее из-за широкого распространения сетей стопологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

    Рис. 1.9. Обрыв кабеля в сети с топологией шина

    Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен .

    Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов , показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи , и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе курса. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

    Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

    При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи . Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающегоабонента . Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

    Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями .

    Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи .

    Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

    Топология звезда

    Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты . Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

    Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

    Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

    В отличие от шины, в звезде на каждой линии связи находятся только два абонента : центральный и один из периферийных. Чаще всего для их соединения используется две линии связи , каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов .

    Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийнымабонентом , может иметь длину L пр.

    Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов . Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

    Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология , называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

    В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер , то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи .

    Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

    Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии , так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией .

    Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом , однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN ).

    Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шиннойтопологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

    Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях , расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем притопологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

    Топология кольцо

    Кольцо - это топология , в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи , как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов .

    Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI ). Кольцо в этом отношении существенно превосходит любые другие топологии .

    Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент , который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен .

    Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии ). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

    Рис. 1.12. Сеть с двумя кольцами

    Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

    Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи , одна из которых находится в резерве.

    Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи , передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

    Другие топологии

    Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис. 1.13) и пассивным (рис. 1.14). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы ).

    Рис. 1.13. Топология активное дерево

    Рис. 1.14. Топология пассивное дерево. К - концентраторы

    Довольно часто применяются комбинированные топологии , среди которых наиболее распространены звездно-шинная (рис. 1.15) и звездно-кольцевая (рис. 1.16).

    Рис. 1.15. Пример звездно-шинной топологии

    Рис. 1.16. Пример звездно-кольцевой топологии

    В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий , а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

    В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи . В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий . Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

    В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи , образующими сетку (рис. 1.17).

    Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

    В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи . Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

    Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту , обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.

    Тема 1.4: Основы локальных сетей

    Тема 1.5: Базовые технологии локальных сетей

    Тема 1.6: Основные программные и аппаратные компоненты ЛВС

    Локальные сети

    1.4. Основы локальных сетей

    1.4.3. Сетевые топологии

    Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

    Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

    В настоящее время в локальных сетях используются следующие физические топологии:

    • физическая "шина" (bus);
    • физическая “звезда” (star);
    • физическое “кольцо” (ring);
    • физическая "звезда" и логическое "кольцо" (Token Ring).

    Шинная топология

    Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных.

    Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.


    Рис. 1.

    Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

    Преимущества сетей шинной топологии:

    • отказ одного из узлов не влияет на работу сети в целом;
    • сеть легко настраивать и конфигурировать;
    • сеть устойчива к неисправностям отдельных узлов.

    Недостатки сетей шинной топологии:

    • разрыв кабеля может повлиять на работу всей сети;
    • ограниченная длина кабеля и количество рабочих станций;
    • трудно определить дефекты соединений.

    Топология типа “звезда”

    В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub) . Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.



    Рис. 2.

    Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

    Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

    Преимущества сетей топологии звезда:

    • легко подключить новый ПК;
    • имеется возможность централизованного управления;
    • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

    Недостатки сетей топологии звезда:

    Топология “кольцо”

    В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.


    Рис. 3.

    Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо. Данную сеть очень легко создавать и настраивать.

    К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

    Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

    Топология Token Ring

    Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

    Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

    Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.


    Рис. 4.

    В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

    Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

    Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

    Преимущества сетей топологии Token Ring:

    • топология обеспечивает равный доступ ко всем рабочим станциям;
    • высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

    Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.