• Устройство и программирование микроконтроллеров AVR. Микроконтроллер и как его победить. Основы программирования микроконтроллеров AVR

    Здравствуйте, уважаемые Хабражители!

    В этой статье я хочу рассказать о том, как однажды решил начать программировать микроконтроллеры, что для этого понадобилось и что в итоге получилось.

    Тема микроконтроллеров меня заинтересовала очень давно, году этак в 2001. Но тогда достать программатор по месту жительства оказалось проблематично, а о покупке через Интернет и речи не было. Пришлось отложить это дело до лучших времен. И вот, в один прекрасный день я обнаружил, что лучшие времена пришли не выходя из дома можно купить все, что мне было нужно. Решил попробовать. Итак, что нам понадобится:

    1. Программатор
    На рынке предлагается много вариантов - от самых дешевых ISP (In-System Programming) программаторов за несколько долларов, до мощных программаторов-отладчиков за пару сотен. Не имея большого опыта в этом деле, для начала я решил попробовать один из самых простых и дешевых - USBasp. Купил в свое время на eBay за $12, сейчас можно найти даже за $3-4. На самом деле это китайская версия программатора от Thomas Fischl . Что могу сказать про него? Только одно - он работает. К тому же поддерживает достаточно много AVR контроллеров серий ATmega и ATtiny. Под Linux не требует драйвера.

    Для прошивки надо соединить выходы программатора VCC, GND, RESET, SCK, MOSI, MISO с соответствующими выходами микроконтроллера. Для простоты я собрал вспомогательную схему прямо на макетной плате:

    Слева на плате - тот самый микроконтроллер, который мы собираемся прошивать.

    2. Микроконтроллер
    С выбором микроконтроллера я особо не заморачивался и взял ATmega8 от Atmel - 23 пина ввода/вывода, два 8-битных таймера, один 16-битный, частота - до 16 Мгц, маленькое потребление (1-3.6 мА), дешевый ($2). В общем, для начала - более чем достаточно.

    Под Linux для компиляции и загрузки прошивки на контроллер отлично работает связка avr-gcc + avrdude. Установка тривиальная. Следуя инструкции , можно за несколько минут установить все необходимое ПО. Единственный ньюанс, на который следует обратить внимание - avrdude (ПО для записи на контроллер) может потребовать права супер-пользователя для доступа к программатору. Выход - запустить через sudo (не очень хорошая идея), либо прописать специальные udev права. Синтаксис может отличаться в разных версиях ОС, но в моем случае (Linux Mint 15) сработало добавление следующего правила в файл /etc/udev/rules.d/41-atmega.rules:

    # USBasp programmer SUBSYSTEM=="usb", ATTR{idVendor}=="16c0", ATTR{idProduct}=="05dc", GROUP="plugdev", MODE="0666"

    После этого, естественно, необходим перезапуск сервиса
    service udev restart
    Компилировать и прошивать без проблем можно прямо из командной строки (кто бы сомневался), но если проектов много, то удобнее поставить плагин и делать все прямо из среды Eclipse.

    Под Windows придется поставить драйвер. В остальном проблем нет. Ради научного интереса попробовал связку AVR Studio + eXtreme Burner в Windows. Опять-таки, все работает на ура.

    Начинаем программировать

    Программировать AVR контроллеры можно как на ассемблере (AVR assembler), так и на Си. Тут, думаю, каждый должен сделать свой выбор сам в зависимости от конкретной задачи и своих предпочтений. Лично я в первую очередь начал ковырять ассемблер. При программировании на ассемблере архитектура устройства становится понятнее и появляется ощущение, что копаешься непосредственно во внутренностях контроллера. К тому же полагаю, что в особенно критических по размеру и производительности программах знание ассемблера может очень пригодиться. После ознакомления с AVR ассемблером я переполз на Си.

    После знакомства с архитектурой и основными принципами, решил собрать что-то полезное и интересное. Тут мне помогла дочурка, она занимается шахматами и в один прекрасный вечер заявила, что хочет иметь часы-таймер для партий на время. БАЦ! Вот она - идея первого проекта! Можно было конечно заказать их на том же eBay, но захотелось сделать свои собственные часы, с блэк… эээ… с индикаторами и кнопочками. Сказано - сделано!

    В качестве дисплея решено было использовать два 7-сегментных диодных индикатора. Для управления достаточно было 5 кнопок - “Игрок 1” , “Игрок 2” , “Сброс” , “Настройка” и “Пауза” . Ну и не забываем про звуковую индикацию окончания игры. Вроде все. На рисунке ниже представлена общая схема подключения микроконтроллера к индикаторам и кнопкам. Она понадобится нам при разборе исходного кода программы:

    Разбор полета

    Начнем, как и положено, с точки входа программы - функции main . На самом деле ничего примечательного в ней нет - настройка портов, инициализация данных и бесконечный цикл обработки нажатий кнопок. Ну и вызов sei() - разрешение обработки прерываний, о них немного позже.

    Int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; }
    Рассмотрим каждую функцию в отдельности.

    Void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1<

    Настройка портов ввода/вывода происходит очень просто - в регистр DDRx (где x - буква, обозначающая порт) записивается число, каждый бит которого означает, будет ли соответствующий пин устройством ввода (соответствует 0) либо вывода (соответствует 1). Таким образом, заслав в DDRB и DDRD число 0xFF, мы сделали B и D портами вывода. Соответственно, команда DDRC = 0b11100000; превращает первые 5 пинов порта C во входные пины, а оставшиеся - в выходные. Команда PORTC |= 0b00011111; включает внутренние подтягивающие резисторы на 5 входах контроллера. Согласно схеме, к этим входам подключены кнопки, которые при нажатии замкнут их на землю. Таким образом контроллер понимает, что кнопка нажата.

    Далее следует настройка двух таймеров, Timer0 и Timer1. Первый мы используем для обновления индикаторов, а второй - для обратного отсчета времени, предварительно настроив его на срабатывание каждую секунду. Подробное описание всех констант и метода настройки таймера на определенноый интервал можно найти в документации к ATmega8.

    Обработка прерываний

    ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } }

    При срабатывании таймера управление передается соответствующему обработчику прерывания. В нашем случае это обработчик TIMER0_OVF_vect, который вызывает процедуру вывода времени на индикаторы, и TIMER1_COMPA_vect, который обрабатывает обратный отсчет.

    Вывод на индикаторы

    Void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; }

    Функция display использует метод динамической индикации. Дело в том, что каждый отдельно взятый индикатор имеет 9 контактов (7 для управления сегментами, 1 для точки и 1 для питания). Для управления 4 цифрами понадобилось бы 36 контактов. Слишком расточительно. Поэтому вывод разрядов на индикатор с несколькими цифрами организован по следующему принципу:

    Напряжение поочередно подается на каждый из общих контактов, что позволяет высветить на соответствующем индикаторе нужную цифру при помощи одних и тех же 8 управляющих контактов. При достаточно высокой частоте вывода это выглядит для глаза как статическая картинка. Именно поэтому все 8 питающих контактов обоих индикаторов на схеме подключены к 8 выходам порта D, а 16 управляющих сегментами контактов соединены попарно и подключены к 8 выходам порта B. Таким образом, функция display с задержкой в 0.25 мс попеременно выводит нужную цифру на каждый из индикаторов. Под конец отключаются все выходы, подающие напряжение на индикаторы (команда PORTD = 0;). Если этого не сделать, то последняя выводимая цифра будет продолжать гореть до следующего вызова функции display, что приведет к ее более яркому свечению по сравнению с остальными.

    Обработка нажатий

    Void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } }

    Эта функция по очереди опрашивает все 5 кнопок и обрабатывает нажатие, если таковое случилось. Нажатие регистрируется проверкой bit_is_clear(BUTTON_PIN, bit) , т.е. кнопка нажата в том случае, если соответствующий ей вход соединен с землей, что и произойдет, согласно схеме, при нажатии кнопки. Задержка длительностью DEBOUNCE_TIME и повторная проверка нужна во избежание множественных лишних срабатываний из-за дребезга контактов. Сохранение статуса нажатия в соответствующих битах переменной _pressed используется для исключения повторного срабатывания при длительном нажатии на кнопку.
    Функции обработки нажатий достаточно тривиальны и полагаю, что в дополнительных комментариях не нуждаются.

    Полный текст программы

    #define F_CPU 4000000UL #include #include #include #define DEBOUNCE_TIME 20 #define BUTTON_PIN PINC #define SETUP_BIT PC0 #define RESET_BIT PC1 #define PAUSE_BIT PC2 #define PLAYER1_BIT PC3 #define PLAYER2_BIT PC4 #define KEY_SETUP 0b00000001 #define KEY_RESET 0b00000010 #define KEY_PAUSE 0b00000100 #define KEY_PLAYER1 0b00001000 #define KEY_PLAYER2 0b00010000 volatile int ActiveTimer = 0; volatile int Timer1 = 0; volatile int Timer2 = 0; volatile int _buzzer = 0; volatile int _pressed = 0; // function declarations void init_io(); void init_data(); int number_mask(int num); void handle_buttons(); void handle_button(int key); void process_setup(); void process_reset(); void process_pause(); void process_timeoff(); void process_player1(); void process_player2(); void display(); void display_number(int mask, int number); void sound_on(int interval); void sound_off(); // interrupts ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } } int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; } void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1< 5940 || Timer2 > 5940) { Timer1 = 0; Timer2 = 0; } } void process_reset() { init_data(); } void process_timeoff() { init_data(); sound_on(30); } void process_pause() { ActiveTimer = 0; } void process_player1() { ActiveTimer = 2; } void process_player2() { ActiveTimer = 1; } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } } void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; } void sound_on(int interval) { _buzzer = interval; // put buzzer pin high PORTC |= 0b00100000; } void sound_off() { // put buzzer pin low PORTC &= ~0b00100000; }

    Прототип был собран на макетной плате.

    Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

    К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

    С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

    В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

    Первая программа на Си для AVR

    Выбор компилятора и установка среды
    Для AVR существует множество разных компиляторов Си:
    В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

    Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

    Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
    Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

    Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

    Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

    Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

    Cоздание проекта
    Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

    Открывается рабочее поле с пустым *.c файлом.

    Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
    Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

    Настройка проекта
    Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

    Тыкай в кнопку с шестеренкой.


    Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
    Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

    Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

    Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


    На этом пока все. Жми везде ОК и переходи в исходник.

    Постановка задачи
    Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

    Работать будет так:
    При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

    Собираем схему
    Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

    Получится, в итоге вот такая схема:


    Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

    Пишем код

    Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

    Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

    Там правда еще не все главы перенесены, но, думаю, это ненадолго.

    Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

    Добавляем библиотеки.
    Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

    1 #include

    #include

    Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

    Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

    Главная функция.
    Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

    • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
    • Передаваемые параметры, тот самый икс.
    • Тело функции.

    Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

    Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

    1 2 3 4 5 int main(void ) { return 0 ; }

    int main(void) { return 0; }

    Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

    Разберем что же мы сделали.
    int это тип данных которая функция main возвращает.

    Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

    Это не ошибка, работать будет, но я не люблю варнинги.

    void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

    Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

    return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
    Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

    Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

    1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

    int main(void) { unsigned char i; return 0; }

    unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
    i — это всего лишь имя переменной. Не более того.

    Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

    Делаем так:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

    int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

    Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

    Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

    bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
    Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

    Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

    Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

    Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

    Дальше все просто:
    Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

    Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

    Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

    Отладка
    Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

    Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

    Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

    Вскрытие
    Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

    Вначале будет ботва из серии:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

    00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

    Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
    Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

    0000002B: BE1F OUT 0x3F,R1 Out to I/O location

    Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

    1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

    0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

    Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

    00000032: 940C0041 JMP 0x00000041 Jump

    Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

    1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

    00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

    Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

    1 +00000034: 940C0000 JMP 0x00000000 Jump

    00000034: 940C0000 JMP 0x00000000 Jump

    А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

    Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

    1 2 3 4 5 6 7 8 9 10 11 12 <

    00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

    А вот тут косяк:

    1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

    0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

    Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

    Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

    Продолжение следует через пару дней …

    Offtop:
    Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
    Обсуждение и скачивание,

    Доброго дня уважаемые радиолюбители!
    Приветствую вас на сайте “ “

    Что такое микроконтроллер, и для чего он нужен. Давайте обратимся к его определению:

    – микросхема, предназначенная для управления электронными устройствами, или по другому – простенький компьютер (микро-ЭВМ), способный выполнять несложные задачи.

    То есть, по сути, микроконтроллер – это устройство, позволяющее воплотить в жизнь наши идеи (даже бредовые), но, естественно, в пределах своих возможностей. И самое главное, воплощение идеи в жизнь достигается не созданием навороченных электронных конструкций, а лишь только, в основном, силой нашей мысли (желаете стать волшебником?).
    Наибольшей популярностью у радиолюбителей пользуются два вида микроконтроллеров:
    PIC – фирмы Microchip Technology
    AVR – фирмы Atmel

    Сразу хочу сделать небольшое отступление и пояснить одну свою позицию. Я не собираюсь ни сейчас, ни потом, рассуждать о достоинствах того или иного вида микроконтроллеров, того или иного программного обеспечения, и вообще всего, что связано с микроконтроллерами, что-то советовать, но а тем более – навязывать читателям. Все это дело вкуса, личных предпочтений и поставленных конечных целей в изучении микроконтроллеров. Ну а так как “необъятное – не объять”, все свое дальнейшее повествование я буду вести применительно к микроконтроллерам AVR и, не очень распространенной, но мной любимой, программы “Algorithm Builder”. У разных типов микроконтроллеров, программ, есть, конечно, различия, но многое у них и общее. А познавать мир микроконтроллеров мы будем так, чтобы потом, полученные знания можно было бы без проблем применить и к PICам, и к любому программному обеспечению. И еще раз напомню, данная серия статей – моя попытка помочь тем, кто впервые услышал о существовании микроконтроллеров и желает постичь работу с ними.

    Что нужно для того, чтобы научиться работать с микроконтроллерами? Я бы выделил несколько, на мой взгляд, главных условий:
    1. Желание и настойчивость .
    Тут все очень просто: есть желание – все получится. А желание с настойчивостью – вообще, вещь суперская.
    2. Знание устройства микроконтроллера.
    Здесь не важны глубокие знания (да может и вообще не нужны), но знать, что имеется “на борту” микроконтроллера необходимо. Только зная из чего состоит микроконтроллер, какие устройства в нем есть, их возможности, как они работают – только тогда мы сможем использовать возможности микроконтроллера на полную катушку.
    3. Знание языка программирования и команд управления микроконтроллером.
    Как будет работать микроконтроллер, какие задачи вы на него возлагаете и как он будет их выполнять, определяется заложенной в него программой – программой которую для микроконтроллера составляете вы сами. И на этом пункте мы остановимся несколько подробней, чтобы рассмотреть вопросы, которые могут появиться в будущем.

    Программа (в переводе это слово означает – “предписание”) – предварительное описание предстоящих событий или действий.

    К примеру, мы хотим, чтобы микроконтроллер мигал светодиодом. Простенькая задача, но тем не менее, для того, чтобы микроконтроллер выполнил эту задачу, мы предварительно должны, шаг за шагом, описать все действия микроконтроллера, написать программу, которую он должен выполнить для получения нужного нам результата – мигающий светодиод. Нечто, вроде такого:
    ♦ Зажечь светодиод:
    - настроить вывод к которому подключен светодиод для работы на вывод информации
    - подать на этот вывод логический уровень, который позволит зажечь светодиод
    ♦ Подождать некоторое время:
    - перейти к подпрограмме формирующей паузу (которую тоже нужно “разжевать”)
    - по выполнению подпрограммы паузы вернуться в основную программу
    ♦ Погасить светодиод:
    - подать на вывод логический уровень, гасящий светодиод
    и так далее.
    С термином Программа неразрывно связан другой термин – Алгоритм (как Волк и Заяц, Том и Джерри).

    Алгоритм – набор инструкций, описывающих порядок действия для достижения нужного результата.

    Если в программе мы подробнейшим образом прописываем действия микроконтроллера, то в алгоритме мы определяем порядок действий микроконтроллера, на основе которых мы потом создадим программу. По аналогии с вышеприведенном примером:
    ♦ Зажечь светодиод
    ♦ Подождать некоторое время
    ♦ Погасить светодиод
    и так далее.
    Таким образом, алгоритм – это предшественник программы . И чем тщательно и продумано будет создан алгоритм, тем проще будет создавать программу.

    Итого, программа для микроконтроллера – это последовательность действий микроконтроллера в виде набора команд и инструкций, которые он должен выполнить для достижения поставленных нами целей.

    Команды для микроконтроллера имеют вид набора единичек и нулей:
    00110101 011000100
    так называемые – коды команд, а коды команд – это язык который понимает микроконтроллер. А для того, чтобы перевести наш алгоритм с русского языка на язык микроконтроллера – в эти самые наборы нулей и единичек, существуют специальные программы.
    Эти программы позволяют описать порядок работы для микроконтроллера на более-менее понятном для нас языке, а затем перевести этот порядок на язык понятный микроконтроллеру, в результате чего получается так называемый машинный код – последовательность команд и инструкций (те самые нули и единички) которые только и понимает микроконтроллер. Текст программы, написанный программистом, называется исходным кодом . Перевод программы с языка программирования (исходного кода) на язык микроконтроллера (машинный код) производится трансляторами . Транслятор превращает текст программы в машинные коды, которые потом записываются в память микроконтроллера.
    В таких программах порядок работы микроконтроллера описывается специальным языком – языком программирования. Язык программирования отличается от нашего, человеческого языка. Если наш язык общения служит в основном для того, чтобы обмениваться информацией, то:

    Язык программирования – это способ передачи команд, инструкций, чёткого руководства к действию для микроконтроллера.

    Существует множество языков программирования и их можно разделить на два типа:
    языки программирования низкого уровня
    языки программирования высокого уровня
    Чем они отличаются. А отличаются они своей близостью к микроконтроллеру.
    На заре зарождения микропроцессорной техники, программы писали в машинных кодах, то есть весь алгоритм работы последовательно прописывали в виде нулей и единичек. Вот так, примерно, выглядела программа:

    01000110
    10010011
    01010010

    Вряд-ли кто сможет разобраться в таком наборе комбинаций из двух цифр, а труд первых программистов был очень трудоемкий. Для облегчения своей жизни, программисты и стали создавать первые языки программирования. Так вот, чем ближе язык программирования к такому набору нулей и единиц тем больше он “низкого уровня”, а чем дальше от них – тем больше “высокого уровня”.
    Самые распространенные языки программирования для микроконтроллеров:
    - язык низкого уровня – Ассемблер
    – язык высокого уровня – С (Си)
    Давайте посмотрим на примере их различия (эти примеры абстрактные).
    Допустим нам надо сложить два числа: 25 и 35.
    В машинных кодах эта команда может выглядеть так:
    00000101 1101001
    На языке низкого уровня:
    ADD Rd, Rr
    На языке высокого уровня:
    25+35
    Различие языков низкого и высокого уровня видны невооруженным глазом, комментарии, как говорится, излишни.
    Но давайте копнемся в этих примерах поглубже. Пример машинного кода разбирать не будем, так как он идентичен примеру на Ассемблере. По своей сути, Ассемблерные команды это те же машинные коды (команды) которым просто, чтобы не заблудиться в нулях и единицах, присвоены буквенные аббревиатуры. Ассемблерной командой ADD Rd, Rr мы ставим микроконтроллеру задачу сложить два числа, которые находятся (а для этого мы должны их туда предварительно записать) – первое в Rd, второе в Rr, а результат сложения поместить в Rd. Как видите мы ставим очень конкретную задачу микроконтроллеру: где взять, что с этим сделать и куда поместить результат. В этом случае мы работаем напрямую с микроконтроллером.
    Команда на языке высокого уровня: 25+35 , привычная для нас математическая запись, радующая наш глаз. Но в этом случае мы не работаем напрямую с микроконтроллером, мы просто ставим ему задачу сложить два числа. Результат и последовательность действий в данном случае будет тот-же, что и при выполнении ассемблерной команды: сначала эти два числа будут куда-то записаны, затем сложены а результат куда-то помещен.
    И вот тут кроется главное отличие языков высокого уровня и низкого уровня. Если в Ассемблере мы контролируем весь процесс (хотим мы того, или нет): мы знаем где записаны эти два числа, и мы знаем где будет находиться результат, то в языке высокого уровня мы процесс не контролируем. Программа сама решает куда предварительно записать числа и куда поместить результат. В большинстве случаев нам это и не надо знать, ведь для нас главное итог – число 60 на выходе. Как результат, программы на языках высокого уровня более читаемы, приятны для глаза и меньше по размеру – ведь нам не приходится “лезть во все дыры” и расписывать каждый шаг микроконтроллера, программа это делает потом за нас, когда компилирует ее – переводит в машинные коды. Но тут есть и минус. Два одинаковых алгоритма написанных на Ассемблере и на Си, после преобразования их в машинные коды будут иметь разный размер: программа написанная на Ассемблере будет на 20-40% короче программы написанной на Си – черт его знает, каким путем идет Си для достижения нужного нам результата. И бывают случаи, когда нет доверия к языку высокого уровня и в программе на Си делают вставки кода, написанные на Ассемблере.
    Профессиональные программисты, как правило, знают несколько языков программирования (или работают в команде, в которой есть специалисты по разным языкам), творчески соединяя их возможности и преимущества в одной программе. Ну а нам, любителям, надо знать хотя бы один язык (для начала), и начинать надо (а я в этом твердо уверен, и никто меня не переубедит) с языка низкого уровня – Ассемблера.

    Ну что, я думаю и тут нам все понятно, – язык программирования изучать надо, по-другому – никак.

    Команды и инструкции для управления микроконтроллером.
    У микроконтроллеров AVR более 130 различных команд, которые позволяют ему реализовать все заложенные в нем возможности. Но сразу скажу – мало кто из любителей знает их все и тем более пользуется всеми. Обычно, в любительской практике хватает знания и половины команд, а то и меньше. Но изучать команды надо. Чем больше команд вы будете знать, тем изощреннее (в хорошем смысле слова) и элегантнее программы будут получаться.

    Арифметико-логическое устройство и организация памяти – память программ, память данных, энергонезависимая память


    Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

    Общая информация

    Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

    Немного о AVR

    В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

    1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
    2. Мобильной. Роботы, средства связи и так далее.
    3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
    4. Развлекательной. Украшения и детские игрушки.
    5. Транспорт. Системы безопасности и управления двигателем автомобиля.
    6. Промышленное оборудование. Системы управления станками.

    Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

    Как получить свой первый микроконтроллер?

    AVR-программирование требует:

    1. Наличия необходимой среды разработки.
    2. Собственно самих микроконтроллеров.

    Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

    1. Купить непосредственно сам микроконтроллер.
    2. Обзавестись устройством в составе конструктора (например - Arduino).
    3. Собрать микроконтроллер самостоятельно.

    В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

    Обзавестись устройством в составе конструктора

    В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

    Самостоятельная сборка

    Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

    Как работать?

    Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

    Где и как учиться?

    Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

    Порты ввода/вывода

    Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

    Работа регистров

    Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

    Работа с аналогами

    AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

    Техника безопасности

    Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

    Какую модель выбрать?

    В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

    Заключение

    Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!

    Программирование микроконтроллеров

    Введение

    Раздел 2. Среды программирования. Схемы подключения микроконтроллера

    Раздел 3. Практическая реализация программы на микроконтроллере

    Список использованных источников

    Введение

    Актуальность темы. Микроконтроллеры используются во всех сферах жизнедеятельности человека, устройствах, которые окружают его. Простота подключения и большие функциональные возможности. С помощью программирования микроконтроллера можно решить многие практические задачи аппаратной техники.

    Цель работы . На основе практического примера показать преимущественные характеристики использования микроконтроллеров, необходимости их внедрения в различные устройства.

    Можно считать что микроконтроллер (МК) - это компьютер, разместившийся в одной микросхеме. Отсюда и его основные привлекательные качества: малые габариты; высокие производительность, надежность и способность быть адаптированным для выполнения самых различных задач.

    Микроконтроллер помимо центрального процессора (ЦП) содержит память и многочисленные устройства ввода/вывода: аналого-цифровые преобразователи, последовательные и параллельные каналы передачи информации, таймеры реального времени, широтно-импульсные модуляторы (ШИМ), генераторы программируемых импульсов и т.д. Его основное назначение - использование в системах автоматического управления, встроенных в самые различные устройства: кредитные карточки, фотоаппараты, сотовые телефоны, музыкальные центры, телевизоры, видеомагнитофоны и видеокамеры, стиральные машины, микроволновые печи, системы охранной сигнализации, системы зажигания бензиновых двигателей, электроприводы локомотивов, ядерные реакторы и многое, многое другое. Встраиваемые системы управления стали настолько массовым явлением, что фактически сформировалась новая отрасль экономики, получившая название EmbeddedSystems (встраиваемые системы).

    Достаточно широкое распространение имеют МК фирмы ATMEL, которые располагают большими функциональными возможностями.

    Применение МК можно разделить на два этапа: первый - программирование, когда пользователь разрабатывает программу и прошивает ее непосредственно в кристалл, и второй - согласование спроектированных исполнительных устройств с запрограммируемым МК. Значительно облегчают отладку программы на первом этапе - симулятор, который наглядно моделирует работу микропроцессора. На втором этапе для отладки используется внутрисхемный эмулятор, который является сложным и дорогим устройством, зачастую недоступным рядовому пользователю.

    В тоже время в литературе мало уделено внимания вопросам обучения программированию некоторых недорогих МК, в сочетании с реальными исполнительными устройствами.

    Разработка макета программатора отличающегося простотой, наглядностью и низкой себестоимостью, становиться необходимой как для самого программирования кристаллов, так и для наглядного обучения широкого круга пользователей основам программирования МК.

    Раздел 1. Назначение и область применения, их архитектура

    Микроконтроллер - компьютер на одной микросхеме. Предназначен для управления различными электронными устройствами и осуществления взаимодействия между ними в соответствии с заложенной в микроконтроллер программой. В отличие от микропроцессоров, используемых в персональных компьютерах, микроконтроллеры содержат встроенные дополнительные устройства. Эти устройства выполняют свои задачи под управлением микропроцессорного ядра микроконтроллера.

    К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.

    В отличие от микроконтроллера контроллером обычно называют плату, построенную на основе микроконтроллера, но достаточно часто при использовании понятия "микроконтроллер" применяют сокращенное название этого устройства, отбрасывая приставку "микро" для простоты. Также при упоминании микроконтроллеров можно встретить слова "чип" или "микрочип", "кристалл" (большинство микроконтроллеров изготавливают на едином кристалле кремния), сокращения МК или от английского microcontroller - MC.

    микроконтроллер программа микросхема электронный

    Микроконтроллеры можно встретить в огромном количестве современных промышленных и бытовых приборов: станках, автомобилях, телефонах, телевизорах, холодильниках, стиральных машинах. и даже кофеварках. Среди производителей микроконтроллеров можно назвать Intel, Motorola, Hitachi, Microchip, Atmel, Philips, Texas Instruments, Infineon Technologies (бывшая Siemens Semiconductor Group) и многих других. Для производства современных микросхем требуются сверхчистые помещения.

    Основным классификационным признаком микроконтроллеров является разрядность данных, обрабатываемых арифметико-логическим устройством (АЛУ). По этому признаку они делятся на 4-, 8-, 16-, 32 - и 64-разрядные. Сегодня наибольшая доля мирового рынка микроконтроллеров принадлежит восьмиразрядным устройствам (около 50 % в стоимостном выражении). За ними следуют 16-разрядные и DSP-микроконтроллеры (DSP - Digital Signal Processor - цифровой сигнальный процессор), ориентированные на использование в системах обработки сигналов (каждая из групп занимает примерно по 20 % рынка). Внутри каждой группы микроконтроллеры делятся на CISC - и RISC-устройства. Наиболее многочисленной группой являются CISC-микроконтроллеры, но в последние годы среди новых чипов наметилась явная тенденция роста доли RISC-архитектуры.

    Тактовая частота, или, более точно, скорость шины, определяет, сколько вычислений может быть выполнено за единицу времени. В основном производительность микроконтроллера и потребляемая им мощность увеличиваются с повышением тактовой частоты. Производительность микроконтроллера измеряют в MIPS (Million Instruсtions per Second - миллион инструкций в секунду).

    Термин контроллер образовался от английского слова to control - управлять. Эти устройства могут основываться на различных принципах работы от механических или оптических устройств до электронных аналоговых или цифровых устройств. Механические устройства управления обладают низкой надежностью и высокой стоимостью по сравнению с электронными блоками управления, поэтому в дальнейшем мы такие устройства рассматривать не будем. Электронные аналоговые устройства требуют постоянной регулировки в процессе эксплуатации, что увеличивает стоимость их эксплуатации. Поэтому такие устройства к настоящему времени почти не используются. Наиболее распространенными на сегодняшний день схемами управления являются схемы, построенные на основе цифровых микросхем.

    В зависимости от стоимости и габаритов устройства, которым требуется управлять, определяются и требования к контроллеру. Если объект управления занимает десятки метров по площади, как, например, автоматические телефонные станции, базовые станции сотовых систем связи или радиорелейные линии связи, то в качестве контроллеров можно использовать универсальные компьютеры. Управление при этом можно осуществлять через встроенные порты компьютера (LPT, COM, USB или Ethernet). В такие компьютеры при включении питания заносится управляющая программа, которая и превращает универсальный компьютер в контроллер.

    Использование универсального компьютера в качестве контроллера позволяет в кратчайшие сроки производить разработку новых систем связи, легко их модернизировать (путём простой смены программы) а также использовать готовые массовые (а значит дешёвые) блоки.

    Если же к контроллеру предъявляются особенные требования, такие, как работа в условиях тряски, расширенном диапазоне температур, воздействия агрессивных сред, то приходится использовать промышленные варианты универсальных компьютеров. Естественно, что эти компьютеры значительно дороже обычных универсальных компьютеров, но всё равно они позволяют экономить время разработки системы, за счёт того, что не нужно вести разработку аппаратуры контроллера.